Anasys IR3 webslider 2018.065

Resonance Enhanced AFM-IR and Tapping AFM-IR

10 nm Chemical Imaging and High-Speed Nanoscale FTIR Spectroscopy

Bruker Anasys Instruments’ latest generation, patented AFM-IR technique, achieves sub-monolayer sensitivity with <10 nm spatial resolution for chemical imaging and nanoFTIR spectroscopy.

Click to Expand

Tapping AFM-IR

<10nm Spatial Resolution Chemical Imaging

The new patented Tapping AFM-IR mode is an exciting new capability that provides 10 nm spatial resolution for chemical imaging along with monolayer measurement sensitivity and extends the capability of nanoIR to a broader range of samples. Tapping AFM-IR retains the ease of use of nanoIR technology, so optimum measurement resolution is achieved easily and quickly.

PS P2VP Data 300x209
Chemical characterization of PS-P2VP block co-polymer sample by Tapping AFM-IR. (a) Tapping AFM height image. (b) Tapping AFM-IR spectra clearly identifying each chemical component. (c) Tapping AFM-IR overlay image highlighting both components (PS@ 1492 and P2VP@ 1588). (d) Profile cross section highlighting the achievable spatial resolution, 10 nm.
Sample courtesy of Dr. Gilles Pecastaings and Antoine Segolene at University of Bordeaux

Resonance Enhanced AFM-IR

10 nm Chemical Imaging and High-Speed Nanoscale FTIR Spectroscopy

Bruker Anasys Instruments’ latest generation, patented AFM-IR technique achieves sub-monolayer sensitivity with <10 nm spatial resolution for chemical imaging and nanoFTIR spectroscopy.

FASTspectra provides the highest performance nanoscale IR spectroscopy with unrivalled signal to noise performance, broadband IR spectroscopy in seconds and direct correlation to bulk FTIR techniques.

Tapping AFM-IR is the latest generation AFM-IR imaging mode that provides <10 nm resolution chemical imaging and simultaneous mechanical property mapping and topography.

Nanoscale IR Chemical Analysis

Soft Materials Diag Horiz

Chemical Composition and Nanoscale Property Mapping

Nano Chem And Property Mapping

Rich Interpretable Spectra Directly Correlates to FTIR

RichSpectra horizontal 300x93

Monolayer Sensitiviety and High Spatial Resolution

Monolayer Sensitivity


FASTspectra is a proprietary technology from Bruker Anasys providing an order of magnitude increase in spectroscopy data acquisition time, resulting in high quality IR spectra in seconds. It is simply the highest performance nanoscale IR spectroscopy technique available today. It provides high quality, rich detailed spectra that directly correlates to bulk FTIR techniques providing true nanoscale FTIR

Additionally, FASTspectra laser technology extends the wavelength range of Resonance Enhanced AFM-IR to cover the 2700 to 3600cm-1 wavenumber range, setting new standards of resolution and sensitivity for nanoscale IR spectroscopy for an even wider range of applications, and still providing unrivalled correlation to FTIR spectroscopy.

FASTspectra utilizes resonance enhanced AFM-IR ability to measure on sample features of 10 nm’s as well as features with monolayer sensitivity.

FASTspectra Timeline

Breaking the IR Diffraction Limit x100 with AFM-IR

IR micro spectroscopy has already demonstrated itself as a powerful tool for spatial mapping chemical content in a wide variety of applications [1-3], but has fundamental spatial resolution limits set by both the laws of optics and practical design constraints.

Atomic force microscopy (AFM) has a wide range of imaging modes but is unable to provide un-ambiguous chemical composition.

The AFM-IR technique combines the precise chemical identification of infrared spectroscopy with the nanoscale capabilities of AFM to chemically identify sample components with a chemical spatial resolution down to 10 nm with monolayer sensitivity breaking the diffraction limit by >100x.

True Nanoscale FTIR

AFM-IR absorption spectra are direct measurements of sample absorption, independent of other complex optical properties of the tip and sample. As such, AFM-IR spectra correlate very well to conventional bulk IR spectra.

Peak positions and relative intensities are highly accurate and signal to noise is extremely low, enabling detailed analysis of band shapes, subtle peak shifts, secondary structure, orientation effects and much more.

AFM-IR overcomes many of the limitations of s-SNOM based spectroscopy to provide true model free nanoscale FTIR data.

AFM-IR provides true model free nanoscale FTIR spectra and eliminates the need for modelling. AFM-IR spectra are easily exported to third party chemical libraries (e.g., Bio-RAD’s KnowItAll®) for rapid analysis and identification of unknown chemical components.

RichInterepretableFTRI illustration
Direct correlation of nanoIR spectra to FTIR transmission enables user to identify components in available databases

Webinar: Latest Advancements in Nanoscale IR Spectroscopy: Resolution, Performance and Speed

Kevin Kjoller

“FASTspectra™ provides high speed spectroscopy and extends the spectroscopic range of resonance enhanced AFM-IR”

- Kevin Kjoller, VP of Product Development, Bruker Anasys Instruments

 View the Webinar

Webinar: Achieving Molecular Understanding of Polymer Systems

Dr. Meyers

“We find the AFM-IR to be a very powerful technology for characterizing structures at the nanoscale.”

- Dr. Greg Meyers, Core R&D, The Dow Chemical Company


 View the Webinar