Deep proteome mining of FFPE tissue with PASEF technology

Kratika Singhal^a, Chris M. Adams^b, Ryan D. Leib^a, Allis S. Chien^a ^aStanford University Mass Spectrometry, Stanford, CA; ^bBruker Daltonics, San Jose, CA

ANALYSIS CONDITIONS	TIMS TOF	FUSION
Column details	25cm sub-2uM C18 reverse phase column	25cm sub-2uM C18 re phase column
Fragmentation method	CID	CID
Gradient length	80 minutes	80 minutes
Injection amount & flow rate	200ng @ 400nL/min	200ng @450nl/mi
Resolution (FWHM) MS/MSMS	40,000/40,000	120,000/5,000
Scan rate	120Hz	20Hz

66th ASMS, San Diego, California, ThP785, June 7, 2018

RESULTS

Fig. 4: Different biological pathways identified using PANTHER overrepresentation test with FDR of < 0.05

DISCUSSION

> Formyl modification of K provides a quick measure of the efficiency of crosslinking reversal. Here, we observe similar low rates across various sample preparation approaches. Use of the Barocycler offers unique advantages in terms of automation, particular for larger sample sets

Sample prep method	Instrument	Modification (%)
PBI with C18 (Colon)	FUSION	1.5
PBI with C18 (Colon)	TIMS	1.1
SUMS with C18 (Colon)	FUSION	0.8
SUMS with C18 (Colon)	TIMS	1.1
PBI with C18 (Breast)	FUSION	1.5
PBI with C18 (Breast)	TIMS	2.1
SUMS with C18 (Breast)	FUSION	0.7
SUMS with C18 (Breast)	TIMS	0.6

> The increased number of observed proteins and peptides seem to be consistent across all tissue types with samples prepared from both Stanford's sample prep method and pressure cycling sample prep (Barocycler) with C18 peptide enrichment. These gains are attributed to increased speed and sensitivity observed due to the trapped ion mobility separation coupled with higher duty cycle of the timsTOF mass spectrometer

CONCLUSION

Advantages of PASEF technology:

- 5X more peptides per protein across all tissue types
- Venn diagrams of the two instrumental platforms show a large overlap (80%) of proteins identified by timsTOF and Fusion
- At least **10%** more sequence coverage with **2X** more unique peptides for a higher confidence score of protein identification
- Based on SAINT probability scores, at least **30%** more novel protein identifications for FFPE colon tissue

Sample preparation strategies:

- C18 proves to be more efficient and reproducible than HILIC in terms of proteome depth and identification of biologically relevant proteins
- HILIC enrichment targeted comparable biological pathways as C18 in protein analysis using PANTHER classification system with 20% of the proteins being characterized

ACKNOWLEDGEMENTS

This work is supported by the Stanford Dean of Research and the Vincent and Stella Coates Foundation.

The authors would like to acknowledge the valuable contributions of V.Gross and R. Marzbanian from Pressure Biosciences Inc. to the project.