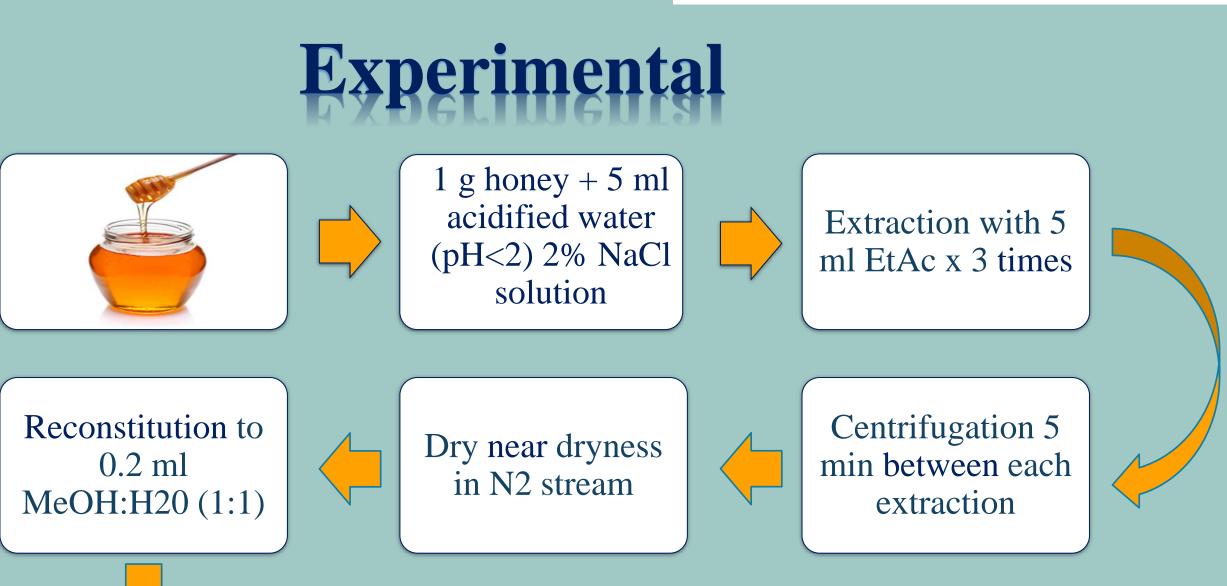


METABOLOMIC APPROACH FOR GREEK HONEY ORIGIN DISCRIMINATION MAKING USE OF ULTRA-HIGH PERFORMANCE LIQUID CHROMATOGRAPHY COUPLED TO HIGH RESOLUTION MASS SPECTROMETRY

Koulis G.A.¹, Katsianou P.¹, Panagopoulou E.¹, Aalizadeh R.¹, Proestos C.², Thomaidis N.S.^{1*}

¹ Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece ² Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece *E-mail address: ntho@chem.uoa.gr



11th International Conference on Instrumental Methods of Analysis Modern Trends and Applications

ABSTRACT

Honey is a foodstuff which is subjected to various deceitful practices, such as addition of syrups or mislabelling due to its high price in the market. Many honeys in the market, sold as unifloral, are often adulterated with others inferior in quality products, on account of great demand and high production cost. It is widely known that honey obtained from specific plants is strictly associated with unique organoleptic and/or health beneficial properties [1]. Hence, the evaluation and verification of honey authenticity is a task of paramount importance for the producers, consumers and regulatory bodies. Untargeted metabolomics using UPLC-ESI-QTOF MS is a powerful approach for the simultaneously analysis of many compounds as well as identify new biomarkers which can discriminate the samples according to their origin. A generic extraction protocol was utilized in order to obtain the whole metabolic profile of the samples. The developed method was applied to 135 Greek honey samples from 5 different botanical origins. Most of the samples are unifloral while some other are polyfloral. The nontarget screening approach was performed using Bruker Metaboscape 3.0 software which incorporates sophisticated tools for profiling, statistical analysis and compound identification. New compounds which differentiate the samples according to botanical and geographical origin were finally identified. The same samples were deeply investigated by a uniquely developed methodology and screening workflow called "AutoSuspect" making use a novel MS-ready database containing hundreds of thousands of naturally occurring compounds [2], and the results were compared.

Data Treatment Metaboscape workflow

T-ReX 3Dalgorithm(Time alignedRegionCompleteeXtractionalgorithm).

- Automated calibration
- de-isotoping algorithm
- retention-time alignment algorithm
- de- adducting
- MS/MS spectrum assigned to each individual Bucket automatically

Pr	ojects Overvie	ew	<u>ک</u>	Quality Control	Statistics		Compound ID	<u>hth</u>	Spectral Library	Pathy Mapp	/ay ing					\$? ■ P	
	«		🛅 San	nple Tree 🛛 🕻	😵 Processing Vie	w ျ _{եհ} MS Spe	ectrum	Œ		**** Bucket .	∮ i Box Plot	i≂:8 Buck	(et MS/	MS \land Chrom	Mass	c	Legend	^
				Sample Name		Mass Calib.	Chrom. Al		Botanical (^	×10 ⁶	-					Chrysin	Botanical or	igin:
	Groups	•	1	▲ Tania_BE8_0					other	xiu _						•	other	
		2	2	Tania_BE8.		0.00007	0.53930			.≩ 2.0-						_	🔵 fir	
	Statistics	-	3	⊿ fir	1.0				fir	- 0.2 It							blossom	
	Statistics		4	fir 01_2016		0.00007	3.68124			1.0 -					ſ		 thyme 	
		Ξ.	5	fir 02_BB3_		0.00008	0.50653						• _			· .	citrus	
	Annotation	•	6	fir 03_BB4_		0.00005	0.44380			0.0							pine-bloss	om
			<	fir 04(2) B.	•	0.00003	0.63951		>	\$ 4							oak 🔘	~
	Pathway Mapping		m Bud	:ket Table														
<u> </u>		4												Search/Filter			me	¥ x
	Processing	•		m/z M r	neas. Ions	RT [I Moleo	ular For.	Annotation	is 🔻 AQ	Boxplot	Flags	MS/MS	Name	ΔRT	∆m/z [mDa]	∆m/z [ppm]	mSigi ^
			5	165.0 166.	06314 ± 🖬	5.58	C9	H ₁₀ O ₃	AL SF		Þ		վետ	Ethyl vanillin	-0.02	0.176	1.069	11.
	_		6	271.0 272.	06857 ± 🖬	7.25	C15	H12O5	AL SF					Pinobanksin	0.05	0.105	0.386	7.1
	Export		7	253.0 254.	05810 ± 🔤	9.70	C1	H10O4	AL SF		-			Chrysin	-0.00	0.186	0.734	15.
		۲.	8	239.0 240.	07874 ± 🔤	10.10	C19	H ₁₂ O ₃	AL SF	 }	+			2',4'-Dihydroxy	0.00	0.094	0.393	14.
	Save		9	153.0 154.	02654 ± 🔤	1.33	C	7H6O4	AL SF		↓ ● ○			3,4- dihydroxy	0.03	0.033	0.219	8.0 🗸
			<															>
			PCA														i / I	- 8
				PC 1		PC 2	Score	Scores and Loadings										
							×10 ⁷	- 🔍						0		,		
							2.0		e 19_RC6_01_2 (02_BB3_01_28				0.5	13.56min : 14	2.02457m	1/Z		
									Elena_BE7_01_	28200								
							0.0		3	<u> </u>		fi	ir 03			1020 (0
							-2.0	- 👂	Tania_BE8_01	_28201				8 1.0/mi	n : 214.00	1839m/z		.5.05
								hipinin Laore										
								-20E6	-10E6 0	E0 10E6	20E6 30E6	D P	C1 🗘	• 0	0.2	0.4 0.6	5 0.8	PC 1

te a new Project										
3D Configuration rameters for detection of molecular features.								•		
Detection		Calibration								
tensity Threshold: 1	500 counts									
num Peak Length:	5 spectra									
Feature Signal: Area	•									
rsive Feature Extraction										
mum Peak Length (recursive):								5 spectra		
num # Features for Extraction:			i i.					8/135 analyses		
et Filter										
nce of features in minimum # of analyses:	I	1 1	1 1	1	I		· · · ·	8/135 analyses		
	1		1 1	1	1		· .	o, iss analyses		
ilter features by occurences in groups.										
ence of features in sample group;		1		1	1		25	% •		

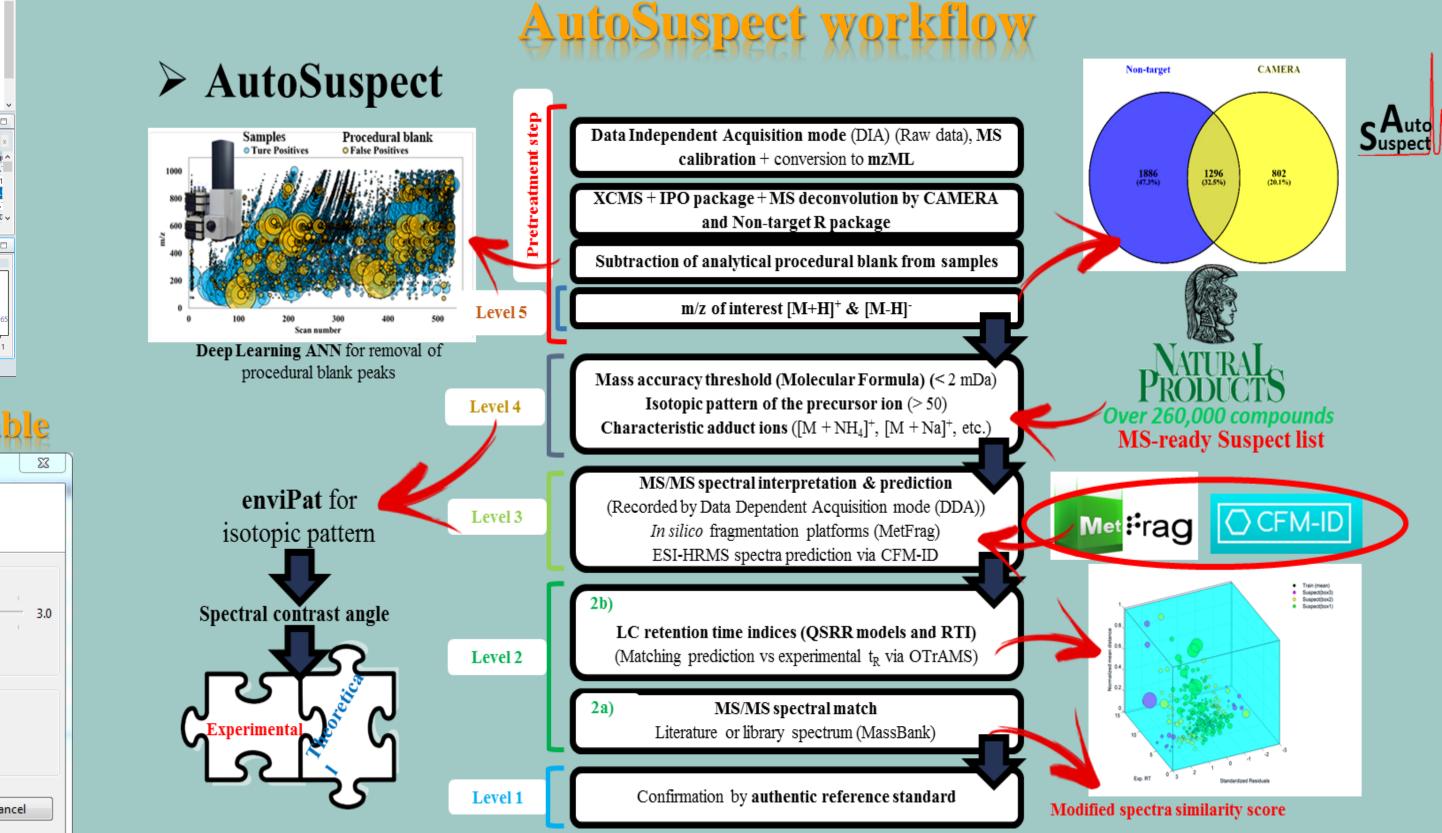
M MS/MS Importer		
-	IS/MS Spectra to Buck lerances for assigning a N	tet Assignment IS/MS spectrum to a Bucket.
Configuration		
m/z:	5	mDa 🔻
Retention time cutof	f: 10	seconds
🔲 Lock Mass Calibra	ation	

Quality cont	rol	0	f bu	ick	et 1	tab	le
M Exclude Buckets from Analyses						l	x
Exclude and/or flag Buckets preser i Buckets will be excluded and/or flag analyses is below the maximal signal	ged if t	he max	imal sign	al in the		ng	
Exclusion Criteria Max signal in non-selected analyses		I	ń	I.	1	i 1	- 20
Max signal in selected analyses Include recursive signals	<=	I	Ļ	I	I		3.0
Flag/Exclude Buckets							

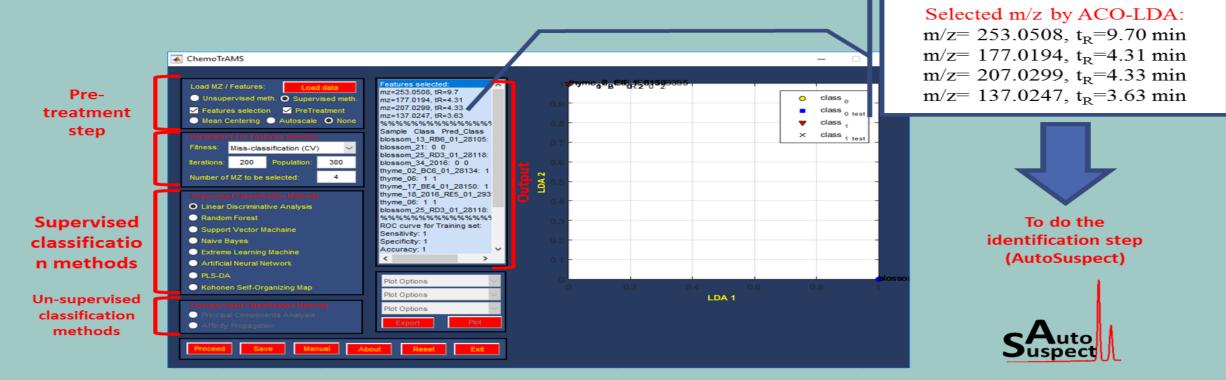
Flag Buckets: RED

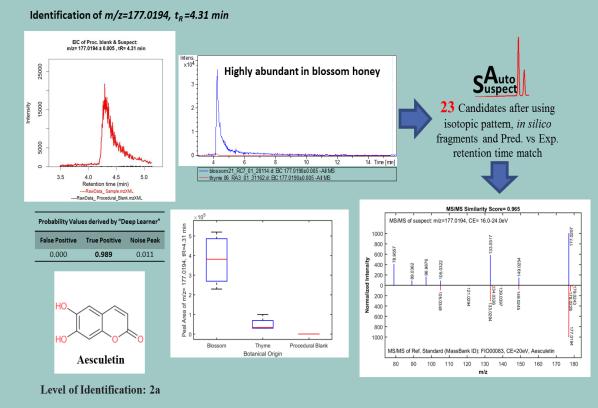
Exclude buckets: 🔽

Bucket Statistics 🕸 Box Plot 🔗 Chromatograms Mass Calibration


Volcano Plo

\$ 4⊳


(† (†)


- UHPLC-ESI-MS/MS: (QTOF-MS)(Bruker MaXis Impact)
- Column: Acclaim C18 (Dionex-Thermo Scientific)
- RP chromatographic system
- Elution gradient program
- ESI mode: negative
- Full scan MS and bbCID mode in a single run


Detection of markers in honey by ChemoTrAMS v2.0 Ant Colony Optimization Linear Discriminative Analysis (ACO-LDA)

Identification 2

Identification of 137.0247, t_R=3.63 min

Statistical Analysis

-8 -6 -4 -2 0 2 4 6 8

T thyme 01_BC5_ thyme 11_BD6_01 hyme 03_BC7_01_2

PC1

ssom 04 RA5 01 2809

ossom 17_RC4_01_2811; om 07_RA8_01_28099

m 25_RD3_01_28118

-0.2 0 0.2

Variable Importanc

4.71min: 302.17290m/:

nin : 286.08414 m

2min: 152.04760m

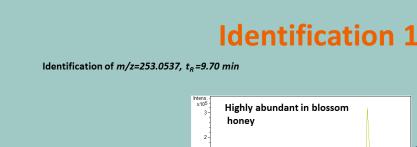
TO 100 200 300 400

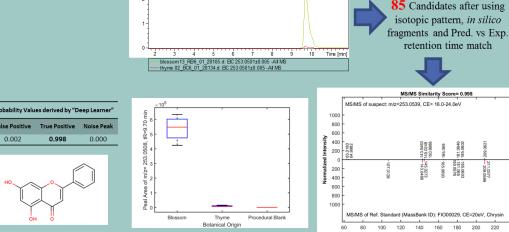
RT [min]

<<u>Back</u> <u>N</u>ext > Einish Cancel

🏢 Bu	icket Table																			I	0 11 11	▽ □ □
																			Search/Filter		Name	• x
	m/z	M meas.	Ions	RT [I	Molecular For	Annotations 🔻	AQ	Boxplot	Flags	MS/MS	Name	ΔRT	∆m/z [mDa]	∆m/z [ppm]	mSigma	MS/MS score	blossom 01_201	5 blossom 02_2016.	blossom 03_RA4	blossom 04_RA5	blosson 🔺
37	193.0	194.05782	+ - •	3.31		C10H10O4	AL SF		•			Ferulic acid	0.31	-0.408	-2.115	00	0.0					
38	137.0	138.03203	+ u	3.63	\checkmark	C7H6O3	AL SF		ĥ II- +			salicylic acid	-0.07	0.356	2.595	3.9	0.0					
39	137.0	138.03204	+ _	3.87		C7H6O3	AL SF		F			salicylic acid	0.17	0.347	2.530	9.1	0.0					
40	151.0	152.04759	+ u	4.45	\checkmark	C ₈ H ₈ O ₃	AL SF		-			Vanillin	-0.35	0.505	3.341	00	0.0					
41	151.0	152.04756	+ <u>-</u>	4.74		C ₈ H ₈ O ₃	AL SF		-			Vanillin	-0.06	0.161	1.068	8	0.0					
42	303.0	304.05804	+ a	4.84	\checkmark	C ₁₅ H ₁₂ O ₇	AL SF	H	p			Taxifolin	-0.06	-0.206	-0.681	00	0.0					
43	269.0	270.05255	+ a	10.11		C15H10O5	AL SF	H	•		du	Galangin	0.11	-0.066	-0.245	00	0.0					
44	287.0	288.06329	+ a	6.36	\checkmark	C ₁₅ H ₁₂ O ₆	AL SF	H	•			Eriodictyol	-0.04	-0.801	-2.792	80	0.0					
45	301.0	302.07890	+ a	7.43		C ₁₆ H ₁₄ O ₆	AL SF	H	• •			Hesperitin	-0.07	-0.684	-2.271	00	0.0					V
46	269.0	270.05273	+ a	8.18	\checkmark	C15H10O5	AL SF	#			վեր	Apigenin	-0.02	-0.065	-0.242	19.3	0.0					
•									L	-											3	4

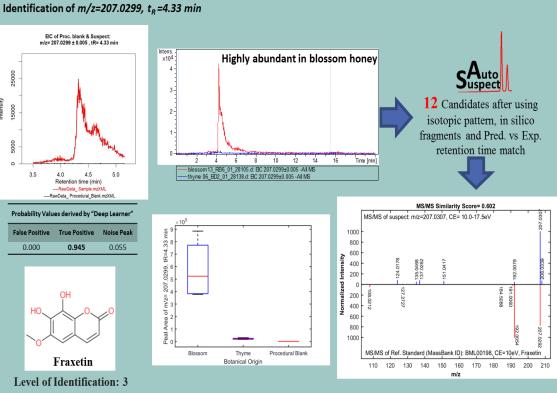
Bucket Annotation

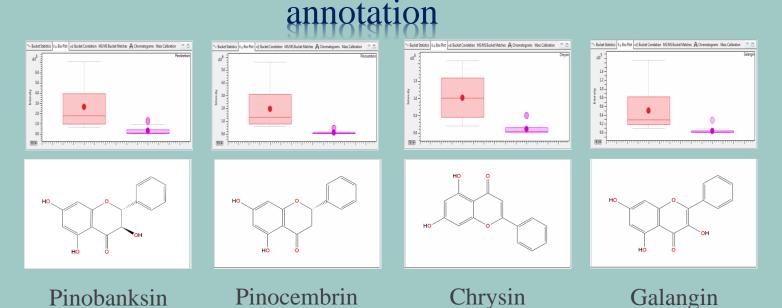

nal	yte List for annotation:	Analyte list for metaboscape annotation											
#	Name	Molecular For	m/z	RT	Main Positi	Main Nega							
1	3,4- dihydroxybenzoic a	C7H6O4	154.0	1.30	[M+H]+	[M-H]1-							
2	2,5-dihydroxybenzoic a	C7H6O4	154.0	2.30	[M+H]+	[M-H]1-	Ξ						
3	4-hydroxybenzoic acid	C7H6O3	138.0	1.40	[M+H]+	[M-H]1-							
4	Apigenin	C15H10O5	270.0	8.20	[M+H]+	[M-H]1-							
5	Caffeic acid	C ₉ H ₈ O ₄	180.0	1.90	[M+H]+	[M-H]1-							
6	Cinnamic acid	C ₉ H ₈ O ₂	148.0	4.50	[M+H]+	[M-H]1-							
7	Epicatechin	C ₁₅ H ₁₄ O ₆	290.0	4.40	[M+H]+	[M-H]1-							
В	Ethyl vanillin	C ₉ H ₁₀ O ₃	166.0	5.60	[M+H]+	[M-H]1-							
9	Ferulic acid	C10H10O4	194.0	3.00	[M+H]+	[M-H]1-							
10	Gallic acid	C7H6O5	170.0	1.30	[M+H]+	[M-H]1-							
11	Hydroxytyrosol	C ₈ H ₁₀ O ₃	154.0	3.50	[M+H]+	[M-H]1-							
12	Luteolin	C15H10O6	286.0	7.50	[M+H1+	[M-H11-	Ŧ						
		Tolerances and Sco	ring										
			Narrow		Wide	Unit							
		m/z:	2.0		5.0	mDa							
٨٣	notate on:				,								
	complete Bucket Table	Retention time:	0.2		0.4 T	minutes							
_		Retention time:			0.4 [1]	j minutes							
0:	Selected Buckets only												
		mSigma:	20		200 [T]	J							
						_							
		MS/MS score:	900		700 [T]]							

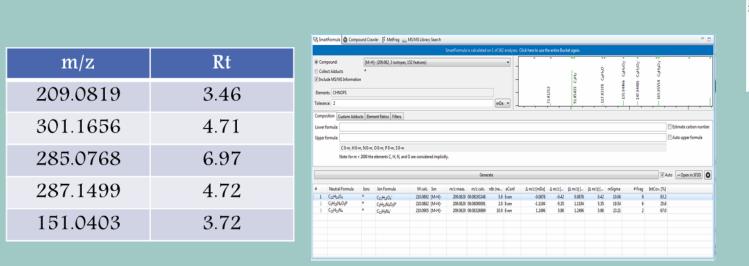

M Annota	ite with Sn	nartFormu	ıla						
Annotat	e with Sn	nartForm	nula						6
Configu	re the para	meters fo	r automatic Sr	martFormula	annotation	s.			
Tolerand	es and Sco	oring							
		Ĩ		Narrow	Wide		Unit		
							U.I.C		
			m/z:	2		5.0 🝸 mDa	• •		
					_				
			mSigma:	20	:	200 [7]			
Compos	ition								
Elemen	ts: CHNO	PS							
								Tationale and	
Lower f								Estimate carl	
Upper f								Auto upper f	ormula
)-∞, N 0-∞, O i < 2000 the el			e considered i	mplicitly.		
Element									
	ly element	ratio filto		El				ended Extrem	_
					·	resets: Comr			le
H/C	0.2	- 3.1	P/	C 0.0	- 0.3	F/C	0.0	- 1.5	
N/C	0.0	- 1.3	P/	0.0	- 0.34	CI/C	0.0	- 0.8	
0/C	0.0	- 1.2	S/	C 0.0	- 0.8	Br/C	0.0	- 0.8	
						_			
			Si/	C 0.0	- 0.5				
Filters									
Electror	n configura	ation: Eve	en (Senior and	Lewis) 🔻					
🗸 Appl	ly heuristic	element	count probabi	ility check.					
Annotat				•					
		mula on:	Ocomplete	Bucket Table					
			Selected B	uckets Only					
							_		
								ОК	Canc

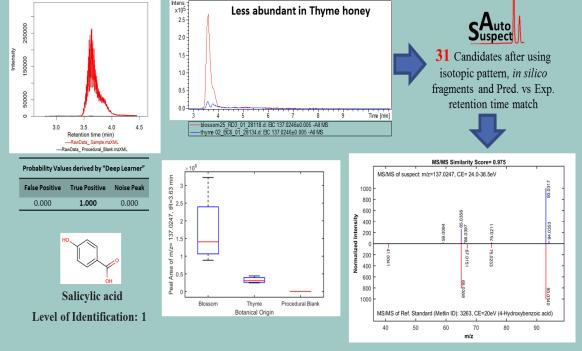
9 buckets seem to be the most influential for the discrimination of Blossom and Thyme honey

5 important buckets are unknown compounds


-SE6 0E0 SE6 PC1 🔍

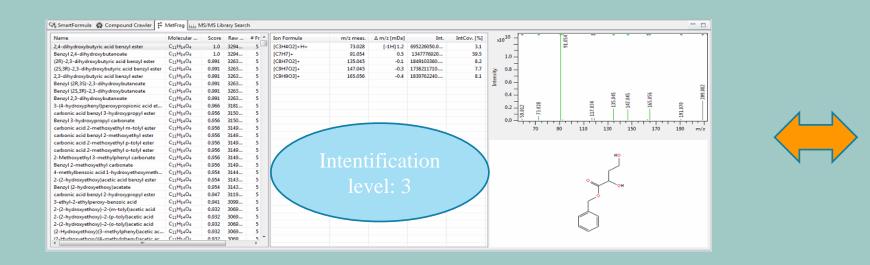

Chrysin Level of Identification: 1


Identification 3



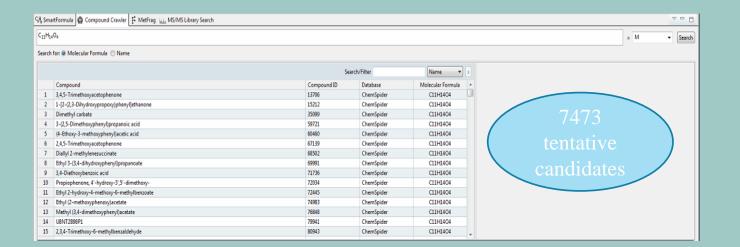
SAuto Suspect

4 buckets are already known from analyte list


- ✓ Authenticity markers were identified using metaboscape 3.0 for the discrimination of blossom and thyme honey samples.
- ✓ AutoSuspect workflow was successfully implemented for the discrimination of blossom and thyme honeys. New biomarkers were identified.

✓ Chrysin is common in both workflows.

✓ Higher level of identification was reached in metaboscape buckets using AutoSuspect.


Literature

- 1. M. Ciulu, N. Spano, M. Pilo, G. Sanna, Molecules (2016) 21, 451.
- R. Aalizadeh, E. L. Schymanski and N. S. Thomaidis, AutoSuspect: an R package to Perform Automatic Suspect Screening based on Regulatory Databases, 15th International Conference on Environmental Science and Technology, CEST2017.

Acknowledgments

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship grant (GA. no. 2084).

