

# Quantitative trace gas analysis of the anesthetic isoflurane using the FT-IR gas analyzer MATRIX II-MG5

Application Note M147

# Introduction

Isoflurane (100% (RS)-1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, CAS# 26675-46-7, molecular weight 184.5 g/mol, density 1.496 mg/µL at 20 °C) is an inhalation anesthetic for animals, in particular for dogs, cats and mice. Isoflurane is a liquid at room temperature (25 °C) with a vapor pressure of around 400 mbar and a boiling point of 48.5 °C. Isoflurane is vaporized in a controlled manner in an oxygen stream. With half-closed rebreathing systems, evaporator gas flows in the range of 1 L/min are applied with isoflurane volume fractions of 1.5 – 3% by volume (evaporation rate 75 – 150 µL/min).

| Species | Initiation | Preservation |
|---------|------------|--------------|
| Cats    | < 4.0%     | 1.5% – 3.0%  |
| Dogs    | < 5.0%     | 1.5% – 1.8%  |

Due to the high volatility of isoflurane, high levels of workplace exposure may occur during use. The recommended maximum occupational exposure for an assumed working time of 8 hours is in the range of 10 - 50 ppm. This relatively high volume fraction can easily be quantitatively tested with the sub-ppm sensitivity of the MATRIX II-MG5.

As a basis for the gas analytical determination, a reference spectrum was first recorded with the VERTEX 80 FT-IR; this barometric calibration provides accuracy better than 2 vol%.

This reference spectrum was then used to create an analysis method for the OPUS GA analysis software. For quantitative verification of the analytical method, the following measurements were carried out:

- Injection of isoflurane into a dry and humidified air stream.
- Determination of the detection limit and water vapor cross sensitivity.
- Verification of detection limits in outside air.
- Discontinuous injection of constant volumes in the dry air stream (quantification).
- Analysis of the volume fractions (ppm) and amounts of substance (µL) after release of small amounts of isoflurane in a closed room.

# Table 1

Initiation and maintenance of anesthesia; volume fractions of isoflurane in oxygen.

MATRIX II-MG5 gas analyzer with 5 m gas cell.

# **Experiments and Measurement Results:**

#### **Determination of the detection limit**

The 5 m gas cell of the MATRIX II-MG is flowed through with a dry air flow of 10 to 20 L/min (mass flow controller up to 50 L/min). Isoflurane and downstream water are injected at two upstream injectors with the aid of gas-tight syringes and syringe pumps.

Note: When humidifying the sample gas flow, it should be noted that the water volume flow additionally dilutes the isoflurane sample. The volume fraction of the sample decreases by x% as the moistening increases the water content from 0 to x vol%, e.g. the isoflurane volume fraction falls to 99% of its value when the water volume fraction is increased from 0 - 1%. A relative humidity of 50% (at 25°C and 1013 mbar) equals 1.56 vol% = 15,600 ppm. Only deviations in the isoflurane volume fraction other than -1.6% are attributable to analytical cross-sensitivity to water.



Fig. 1 FT-IR readings (OPUS GA) and setpoints

GA) and setpoints (volumetric calibration) for isoflurane in outdoor air. The detection limit is in the range of 20 ppb.

#### Verification of detection limits in outside air

In this experiment, outside air is sucked through the gas cell via a membrane pump. The reference measurement was made for outside air and isoflurane injected in front of the gas cell with a syringe pump. With a rotameter at the outlet of the diaphragm pump, the stability of the volume flow was roughly checked. The effective volume flow was calibrated to the FT-IR analysis value (OPUS GA) of 0.59 ppm to 539 sccm. With a gradual reduction of the injection rate, a detection limit of about 20 ppb can be derived from the FT-IR analysis values.



#### Fig. 2 F-TIR measu

F-TIR measured values and setpoints for isoflurane in outside air (measuring time 1 min).

#### Table 2

Mean values, standard deviation (rms) and expected values for the dilution series of isoflurane in outside air according to Fig. 2 (measuring time 1 min, spectral resolution 0.5 cm<sup>-1</sup>).

| Isofluorane    |           |      |                |  |  |
|----------------|-----------|------|----------------|--|--|
| measured / ppm | rms / ppm | rms% | expected / ppm |  |  |
| 1.17           | 0.04      | 3.0  | 1.1            |  |  |
| 0.59           | 0.02      | 3.6  | 0.59           |  |  |
| 0.30           | 0.02      | 7.9  | 0.29           |  |  |
| 0.15           | 0.01      | 5.6  | 0.15           |  |  |
| 0.063          | 0.004     | 6.4  | 0.071          |  |  |
| 0.027          | 0.002     | 8.3  | 0.035          |  |  |
| 0.014          | 0.001     | 7.1  | 0.018          |  |  |

#### Determination of the amount of substance

If the carrier gas flow is sufficiently well known, the FT-IR analysis values can be integrated in time to a total amount of substance. The accuracy of the result allows a statement about the accuracy of the FT-IR analysis values. For this experiment, multiple defined volumes of 0.2, 1 and 5  $\mu$ L of isoflurane were injected into a defined airflow using a syringe pump. The carrier gas flow (dry air) was monitored via a mass flow controller with a max. volume flow (final value) of 1000 sccm (MFC1) and 50000 sccm (MFC2). The accuracy of the MFC is according to the manufacturer 0.5% of the measured value and 0.2% of the final value, i.e., 0.7% for 1000 sccm (MFC1) and 1.5% for 10000 scm (MFC2). Significantly larger deviations can be attributed to the FT-IR gas analysis (OPUS GA, < 2%) or the experimental setup (for example, faulty injection, leakage currents).

The integrated FT-IR analysis values ("analyzed" see Table 3) show deviations in the range of 2 - 4% and are still within the expected confidence interval.

| Isofluorane n µL |               |               |             |  |  |
|------------------|---------------|---------------|-------------|--|--|
| sampled / µL     | analyzed / µL | deviation / % | flow / sccm |  |  |
| 1.6              | 1.63          | 1.6           | 1000 MFC1   |  |  |
| 11               | 10.6          | -3.5          | 10000 MFC2  |  |  |
| 50               | 50.8          | 1.6           | 1000 MFC1   |  |  |

Injected and analyzed amounts of isoflurane in  $\mu$ L (liquid phase).

#### Fig. 3 (left)

Table 3

Measured volume fractions of isoflurane (blue, right ordinate) and derived quantities (red, left ordinate). Injected volumes  $8 \times 0.2 \ \mu L =$  $1.6 \ \mu L @ 1000 \ sccm.$ 

₹

/nlume /µL

cted

#### Fig. 4 (right)

Measured volume fractions of isoflurane (blue, right ordinate) and derived amounts (red, left ordinate). Injected volumes  $11 \times 1 \mu L =$  $11 \mu L @ 10,000$  sccm.

# Fig. 5 (below)

Measured volume fractions of isoflurane (blue, right ordinate) and derived quantities (red, left ordinate). Injected volumes 10 x 5  $\mu$ L = 50  $\mu$ L @ 1000 sccm.





# Analysis of the volume fractions (ppm) and amounts of substance ( $\mu L)$ after release of small amounts of isoflurane in a closed room

For the anesthesia devices, leakage rates of < 50 mL/min (maximum 150 mL/min) should be achieved; for 1 vol% of isoflurane this release rate corresponds to less than 150  $\mu$ L of fluid within 1 h.

In a space of 5 m x 7 m x 3 m = 105 m<sup>3</sup>, the vaporization of this amount of material would nominally produce a volume fraction of 0.28 ppm (at 25 °C and 1013 mbar). In this experiment, 50  $\mu$ L and 200  $\mu$ L of isoflurane were released and the time course of the volume fractions was measured (see Figure 6).

Nominally, the evaporation of 50  $\mu$ L and 200  $\mu$ L of isoflurane in 105 m<sup>3</sup> (at 25 °C and 1013 mbar) gives average volume fractions of 0.11 ppm and 0.44 ppm, 20 – 30% less than the initial peak values of 0.14 ppm and 0.6 ppm (s. Figure 6).

After the release of 50  $\mu$ L and 200  $\mu$ L of isoflurane, the mass flow can be integrated to 0.06  $\mu$ Land 0.19  $\mu$ L. From the ratio of sampled volume (270 L and 130 L) and the total volume of 100 m<sup>3</sup>, a total amount of 22  $\mu$ L and 146  $\mu$ L can be calculated. This allows the magnitude of the amount of released material to be derived experimentally.

| lab volume / 100 m³                   |       |      |  |  |  |
|---------------------------------------|-------|------|--|--|--|
| probed volume at end time / m³        | 0.27  | 0.13 |  |  |  |
| measured amount at end time / $\mu L$ | 0.058 | 0.19 |  |  |  |
| estimated amount / µL                 | 22    | 146  |  |  |  |
| released isoflurane / µL              | 50    | 200  |  |  |  |



## Fig. 6

Measurement of the volume fraction of isoflurane after evaporation of 50 and 200 µL in a room of about 100 m<sup>3</sup>. The opening of the storage bottle ("open bottle") resulted in the first test (50 µL) measurable isoflurane volume fractions of 16 ppb (blue arrow).

# Bruker Optics GmbH & Co. KG

info.bopt.de@bruker.com

bruker.com