
Rapid and cost-efficient analysis of pharmaceutical and clinical samples by TXRF

Bruker Nano Analytics, Berlin Webinar, September 21st, 2016

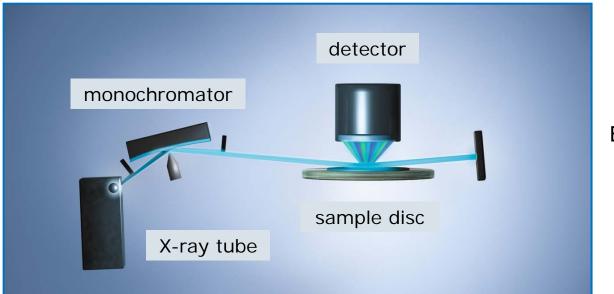
Welcome

Speakers

Dr. Hagen Stosnach Applications Scientist TXRF Berlin, Germany

Dr. Armin Gross Global Product Manager TXRF Berlin, Germany

- Introduction
- Next Generation TXRF Concept
- Application example Quantification of catalyst elements
- Comparison with Atomic Spectroscopy methods
- Summary and Outlook



Introduction

Principles of total reflection X-ray fluorescence (TXRF) spectroscopy

Total reflection X-ray fluorescence spectroscopy

Beam angle: 0° / 90°

- Samples must be prepared on a reflective media
- Polished quartz glass or polyacrylic glass disc
- Dried to a thin layer, or as a thin film or microparticle

Product Portfolio S2 PICOFOX

S2 PICOFOX - Unique benefits

- Most compact design
- Fixed excitation mode
- >200 installations world wide
- Attractive pricing

- portable, for on-site analysis
- easy to use, most suitable for teaching
- well established technology
- most valuable TXRF solution

Second Generation TXRF Spectrometer S4 TStar

improved sensitivity for

measurement of discs,

and QC procedures

lowest limits of detection

microscopy slides, wafers etc.

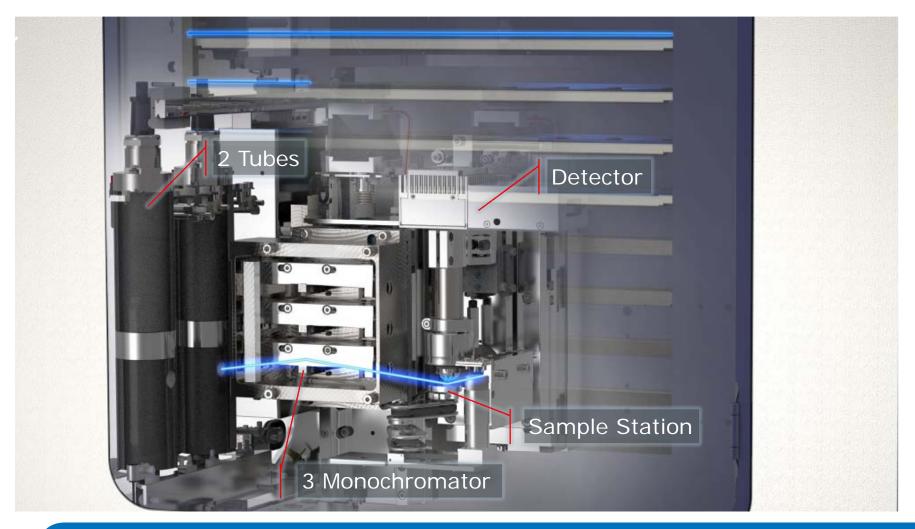
automatic beam adjustment

S4 TStar - Unique benefits

- Multiple excitation to detect most elements modes of the PSE
- Large area detectors
- Sample geometry flexibility
- Motorized beam path
- Large sample capacity up to 90 sample discs, multi-user operation
- Most modern software

instrument/measurement status display, statistical functions

9/22/2016

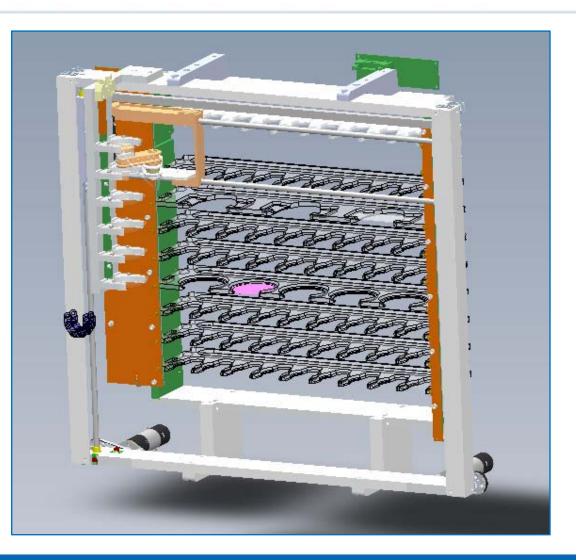


Next Generation TXRF Concept

Next Gen TXRF Excitation and Detection Module

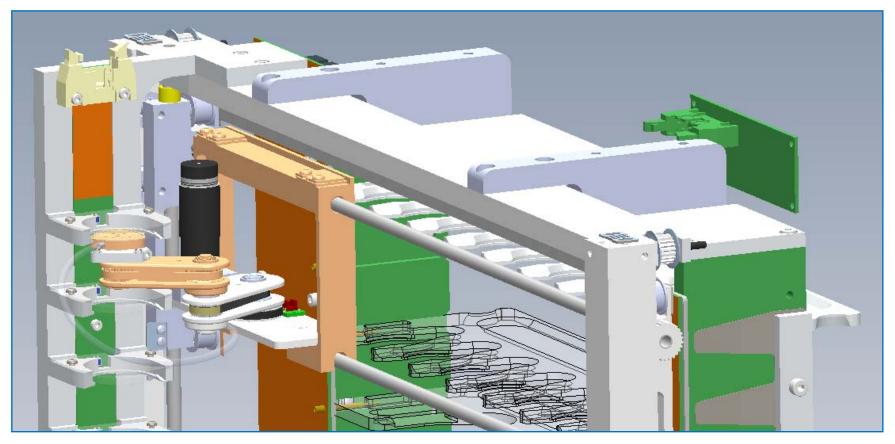
Next Gen TXRF Excitation and Detection Module

Next Gen TXRF Excitation and Detection Module



Feature	S4 TStar	Benefit
Tubes	2 tubes (Mo and W) Ag, Cu, Cr planned	Best performance in one instrument only
Excitations	Up to 3 W-Brems and W-L	Low detection limits for Na – Ca: W-L Ca – Y, Cs – U: Mo Zr – I: W-Brems
Detectors	60 mm ² (100 mm ² option)	Doubles sensitivity

Autosampler


- Horizontal sample orientation
- 90 quartz discs (30 mm)
- 2" wafer
- Microscopy slides
- Rectangular samples max. 54 mm

Autosampler

• 6 internal instrument quality standards

Automatic tray recognition

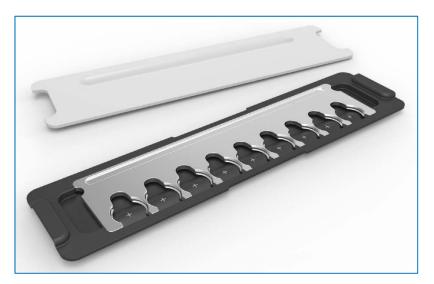
- Recognizes different tray types (disc / wafer / ...)
- "Ownership" for trays
- Automatic loading and starting of measurement jobs possible

Automatic tray recognition

- Recognizes different tray types (disc / wafer / ...)
- "Ownership" for trays
- Automatic loading and starting of measurement jobs possible

LED light provides status information

Tray identified, no job Tray and job identified Job running Job finished


02.08.2015

Next Gen TXRF Valuable accessories

Offer solution including peripheral tools

- Storage box
 - Safe storage of trays and discs after cleaning
 - Stackable
 - Direct sample preparation avoids contamination
- Drying station
 - Fits to tray dimensions
 - One button operation

Next Gen TXRF Software

Modern User Interface

- Intuitive, easy to use SW interface
- Fresh, modern look and feel
- Esprit based SW platform (2.1)
- Multi user interface capability to manage jobs of multiple users
- Job management automated workflow optimization
- Better serviceability remote control, sophisticated performance and error log function

Next Gen TXRF Software

Modern User Interface

- Advanced data evaluation
- Statistics, recoveries
- Threshold levels incl. warnings in case of deviations

Overview	X-ray Source	×	(-ray S	ource		Detector	r.	Π	Jo	b sch	edul	e			
Idle System	↔ 0,0 kV	0	<u>мо</u>	0,0 kV Calibration	•) cps								
Measured jobs	Statistic		Spectru	m	Resul	ts	Report	t							
Nachweisgrenzen	Element Nar	ne	Avera	ge Median	RSD										
🕮 Referenzspektren M K 2 - Plant Soil	22 Tita		0,1		0,003										
Abwassertest 1	23 Van	adium	1,0	36 1,012	2 0,046										
⊕ C3 ⊖ C7G	24 Chr	omium	0,9	26 0,917	7 0,017			_							
ф Мо-К 17,5keV	25 Ma	nganese	0,9	86 0,986	5 0,004				~	tatistical					
• 2919	26 Iror	1	1,0	04 1,002	2 0,007				S	a	IS	stic	ca		
 2904 2926 	27 Cob	alt	0,9	71 0,973	3 0,004									-	
W Brems	28 Nic	kel	0,9	90 0,990	0,005				re	SL	ilt	2			
⊕- C8G	29 Cop	per	0,9	92 0,994	0,004					50					
⊡ C34	30 Zino	:	1,0	30 1,032	2 0,009			_							
B 0Abwassertest	31 Gal	lium	0,9	10 0,910	0,000										
	33 Ars	enic	0,9	54 0,952	2 0,005										
	Concentrati	on for o	och pro	naration											
	concentrati			•											
		Titaniun		Vanadium		Manganese		ron		Cobalt	27 Y	Nickel		Copper	
	Used Prep.		Error		Error	States and	Error		Error		Error	2	Error		Error
	2919	1.	9 0,024	1,012			0,023 1								0,020 1,03
	₹ 2904		4 0,023	1,090			0,020 0								0,018 1,02
	☑ 2926	0,19	4 0,023	1,007	0,079	0,989	0,021 1	,002 (0,019	0,973	0,019	0,990	0,019	0,994	0,019 1,03
Job tree															
													_		
						Re		ιH	°C	of	FC	in	al	\sim	
						Re	:SU	111	.5	U	3		g	e	
						nr	~ ~		ra	+12	~ ~	~			
						pr	eμ	d	l d		ווכ	15			
						· ·	•								

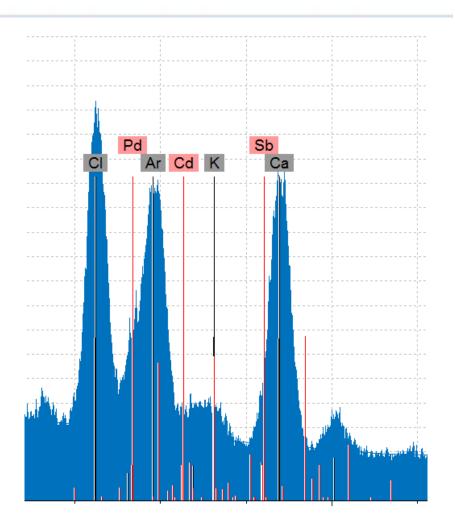
Application of Next Generation TXRF Quantification of catalyst elements

First studies

- Practical course of a pharmacist student at the Institut of Pharmaceutical Chemistry in Braunschweig, Germany
- Analysis of catalyst elements in different matrices
 - 5% and diluted Glucose
 - 0,9% NaCl
 - Placebo pills
 - Distilled water
- Spectrometer S2 PICOFOX Mo excitation (17,5 keV) 50 kV, 600 µA, 1000s

Sample preparation

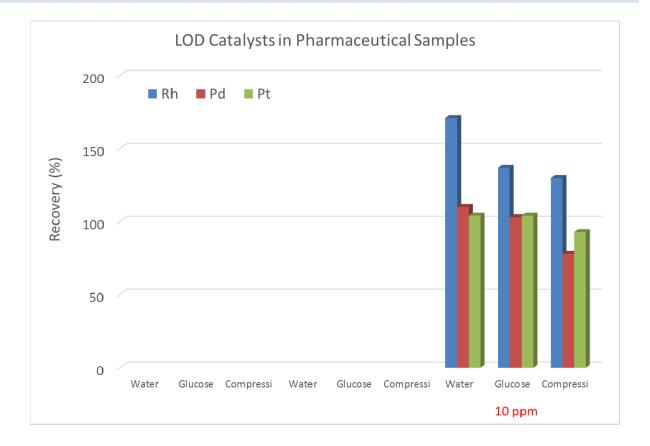
- Direct analysis after addition of internal standard possible
- Pills prepared as suspension after grinding
- No time-consuming digestion required

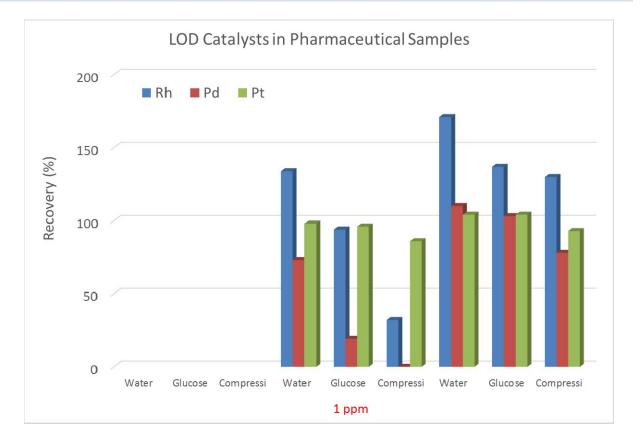


Sample preparation

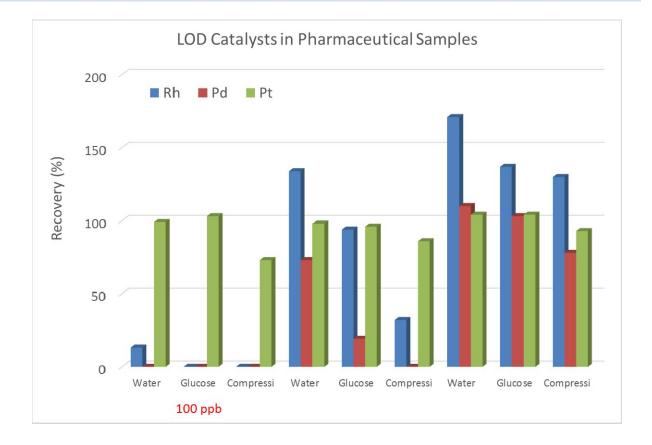
- Direct analysis after addition of internal standard possible
- Pills prepared as suspension after grinding
- No time-consuming digestion required

Issues

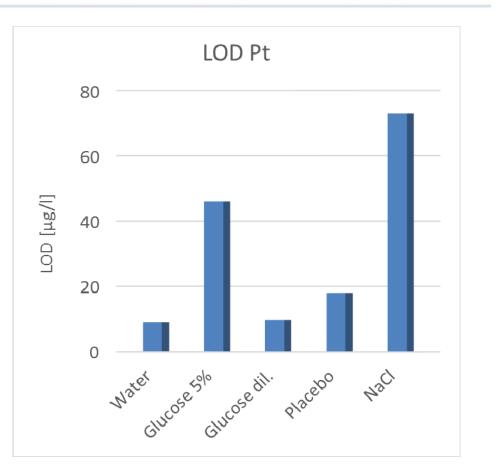

- Mo tube excits only L lines of many catalysts
- Ar can be removed by nitrogen purge
- Strong line overlap with e.g. Cl, K, Ca


10 ppm catalyst

 good recovery for most catalysts


- 1 ppm catalyst
- Rh, Pd "o.k" in water
- Good recovery in all matrices for Pt only

100 ppb catalyst


- Pt good in most matrices
- Rh, Pd not detectable

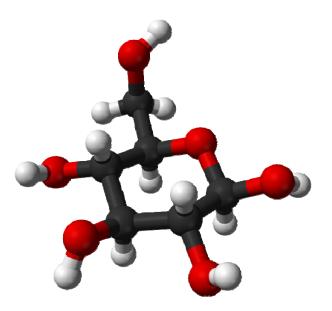
Platinum

- LOD depend on matrix
- Vary from 9 to 70 ppb

Catalyst elements S4 TStar

Catalyst analysis applying other excitation energies

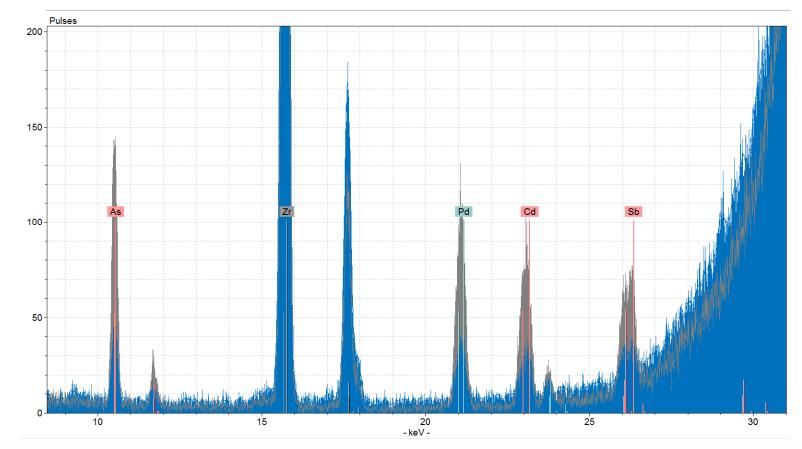
- Spectrometer S4 TStar
- More powerful tubes (30W to 50W)
- New large area detector 60 mm²
- 3 excitation energies
 - Mo-K, 17,5 keV
 - W Bremsstrahlung, 35 keV
 - W-L, 8,4 keV



Catalyst elements S4 TStar

Samples

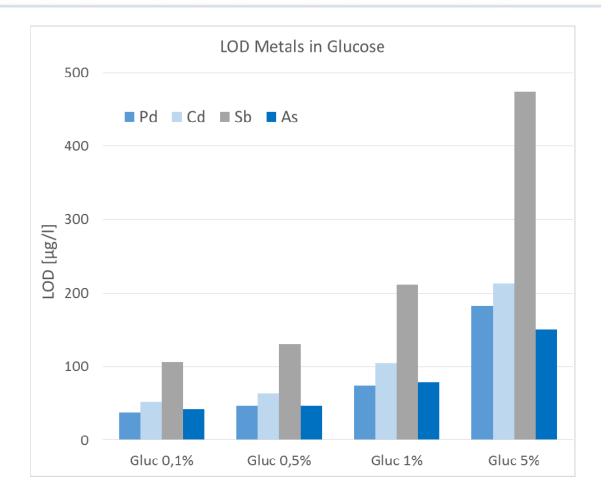
- Glucose at different concentrations (0,1%, 0,5%, 1%, 5%)
- Spike with 2 ppm metal concentration (Cr, As, Pd, Cd, Sb)



Catalyst elements S4 TStar W-Brems excitation

Spectrum W-Brems excitation

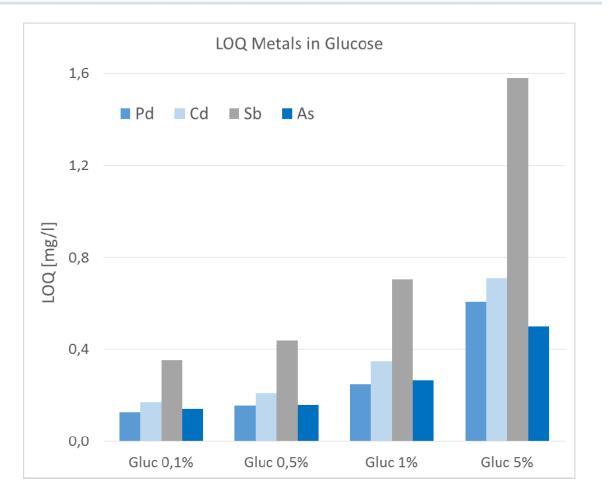
• Well separated peaks of Pd, Cd, Sb



Catalyst elements S4 TStar W-Brems excitation

Results

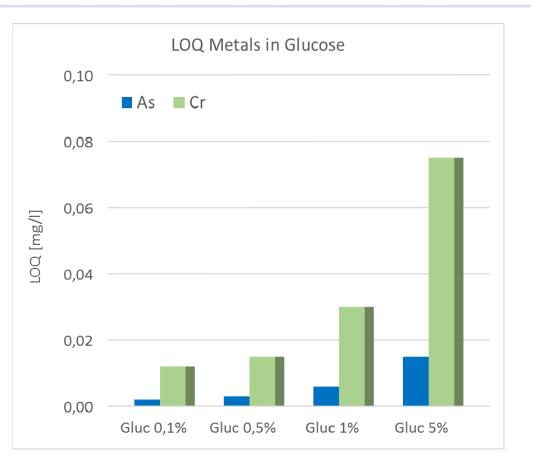
- Count rates of W-Brems excitation below Mo excitation (40% for Pd)
- No critical line overlaps!
- LOD of typical catalyst elements at about 200 ppb in high matrix samples



Catalyst elements S4 TStar W-Brems excitation

Results

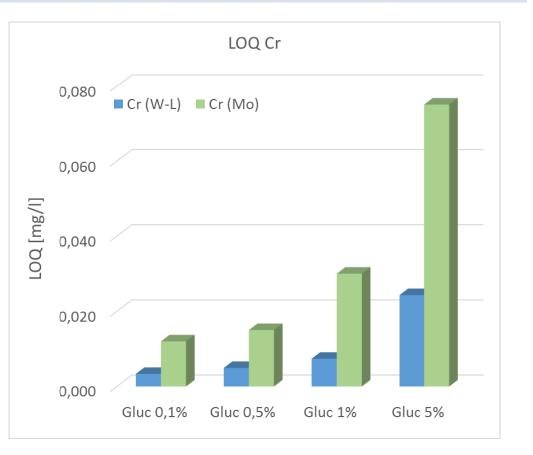
- LOQ typically in the subppm range
- Dilution of high matrix samples strictly recommended
- More uniform sample layer
- Improved reproducibility



Catalyst elements S4 TStar Mo excitation

Outstanding performance

- Low ppb quantification limits for As and Cr
- Similar performance for V, Co, Se, Pt etc. (not shown)



Catalyst elements S4 TStar W-L excitation

Light elements

- W-L excitation for quantification of light elements (Na to V)
- Improvement by a factor of 3 or more
- LOQ for Cr down to 3 ppb
- Quantification of Na, Mg, Al to be tested soon

Catalyst elements Recommended excitations

Element classes

 Most important elements are quantifiable by TXRF applying Mo and W-Brems excitation

Class	Element	Recommended excitation
1	As, Pb, Hg Cd	Mo W-Brems
2A	V, Se, Co Mo	Mo W-Brems
2B	Au, TI, Pt, Ir, Os Ag, Pd, Rh, Ru	Mo W-Brems
3	Ba, Cu, Ni Sb, Sn Cr	Mo W-Brems W-L
4	Fe, Zn, K, Ca, Mn, W Na, Mg, Al	Mo W-L
	B, Li	Not possible

Comparison with Atomic Spectroscopy AAS, ICP-MS, ICP-OES

TXRF Normative Work

EUPh / USP

- ICP-OES/MS already listed as validated method in Pharmacopeia
- Validation of TXRF planned with external cooperation partner

Other norms

- ISO TS 18507: "Technical Specification for the use of Total Reflection X-ray Fluorescence spectroscopy in biological and environmental analysis"
- ISO NWIP: "Total Reflection X-Ray fluorescence analysis of water samples

Cost comparison TXRF versus ICP-MS

Installation	S4 TStar	ICP-MS	Remarks
Instrument price	123.500 €	130.000 €	
Validated installation	8.300€	10.000 €	IQ/OQ/PQ
Training	4.900 €	9.000 €	2 days onsite + courses for 2 users
Gas supplies	0€	8.000 €	Argon, He, H ₂
Electrical supplies	0€	600€	
Exhaust	0€	3.500 €	if exhaust system already exists in building
Peripheral devices	(12.000 €)	28.000 €	Disc cleaning, microwave
Sum	148.700 €	189.100 €	

Cost comparison TXRF versus ICP-MS

Operation / year	S4 TStar	ICP-MS	Remarks
Service contract (std)*	9.483 €	10.000 €	
Gas	0€	7.000€	
Standards	100 €	4.000 €	
Electrical power	200 €	2.000 €	
Spare parts	1.965 €	3.300 €	TXRF: X-ray tube, carriers ICP: detector, torch, cones, injector
Sum	11.748 €	26.300 €	

*) Bruker standard care contract

incl. 1 preventive maintenance per year

Cost comparison TXRF versus ICP-MS

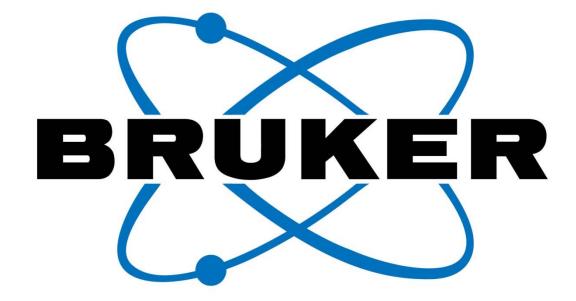
Total (5 years)	S4 TStar	ICP-MS	Remarks
Installation	148.700 €	189.100 €	
Operation costs	58.740 €	131.500 €	
Man hours	120.000 €	185.000 €	100 k€/a, 220 working days, 50 samples/d
Total	327.440 €	505.600 €	
Costs / sample	5,95 €	9,19 €	

Sources: Automotive study 2015 EPA study 2007 ICP-OES cost calculator Discussion forums Bruker data

Summary and outlook

- The S4 TStar TXRF spectrometer using multiple excitation energies allows the quantification of almost all elements listed in USP/EUPh
- LOQ values are typically below 1 ppm, for certain elements in the low ppb range

Next steps


- Studies showing the accuracy and precision of TXRF for metal analysis in different matrices will be continued
- A program for validation of TXRF for pharmaceutical applications is planned
- Software, which will fulfill GMP guidelines and CRF21 part 11 is in development

Any Questions?

Please **type in** the questions you may have for our speakers in the **Questions Box** and click **Submit**

Innovation with Integrity

Thank you for your attention!

www.bruker.com / www.s4tstar.com