Layer Thickness Analysis of Thin Metal Coatings with micro-XRF on SEM

Bruker Nano Analytics, Berlin, Germany Webinar, June 8th 2017

Presenters

Stephan Boehm

Product Manager Micro-XRF/SEM Bruker Nano Analytics, Berlin, Germany

Dr. Max J.L. Bügler Applications Specialist, Bruker Nano Analytics, Berlin, Germany

- XTrace setup and key features
- Basics: Layer thickness measurements with XRF
- Method editor
- Application examples + Live measurements

• Summary

Layer Thickness Analysis with micro-XRF/SEM Key Features

- Micro-XRF source attachment to an SEM works in conjunction with the (existing) Bruker EDS detector
- Element range from Na to U
- Focussing polycapillary X-ray optics enables a spot size of (standard) 35 μm (smaller optics with a spot size of 15 μm available as well)
- Integrated user interface ESPRIT 2.x for Quantax EDS/micro-XRF ...
- Method editor for fast layer method setup is linked to ESPRIT
- Allows the quantification of layer systems measured either in point mode or extracted from line scans or X-ray maps

Layer Thickness Analysis with micro-XRF/SEM Example for instrument setup

Schematic of setup in a SEM for XRF with EDS detector

Layer Thickness Analysis Differences in layer thickness analysis between SEM - XRF

view

SEM:

- 1. Sample require cross sectioned and sample preparation can be time consuming
- 2. Sample must be cut for cross sectioned observation and hence, it will be destroyed
- 3. Sufficient SEM resolution required to makes thin layer visible

XRF:

- 1. Fast and non- destructive method for measuring film thickness without any sample preparation
- 2. Additionally, the composition of the layer can be determined at the same time
- 3. Large numbers of samples or areas can be measured quickly

Layer Thickness Analysis with micro-XRF/SEM

- Large information depth of X-ray excitation allows coating analysis
- Signal from base material and covered layers can be detected
- X-rays are attenuated in characteristic ways on their path through matter
- Intensity ratios of observed elemental lines were used for calculation of the respective layer thicknesses
- Generally, layers up to thickness of 40 µm can be analyzed (3- 4 layers)
- Several quantification models for layer systems available which works easily even standard-less

8

Physical Principles of Layer thickness analysis Generation / Attenuation of XRF

For a single layer on top of a base material:

Layer thickness \rightarrow

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

rel. intensity

- Emission signal originating from coating increases with coating thickness up to the respective bulk intensity
- Emission from base material is attenuated stronger for thicker coatings, until it fades into the background
- Coating thickness can be calculated from absorption of base material, emission from coating, or a combination of both

 $I(d) = I_0 \cdot e^{-\mu \cdot d}$

(absorption):

Physical Principles of Layer thickness analysis Comparison of Layer Stacks

Comparison of stacks shows:

- Attenuation of signal from buried elements
- Increased signal strength from top layers for thicker layers
- Even though Ni reaches
 saturation thickness at about
 25 µm, underneath 5 µm of
 gold the Ni intensity is reduced ²
 to about 2 %
- The overall thickness of stacked layers is limited to about 40 µm, depending on elements and matrix density

keV

Layer Thickness Analysis with micro-XRF/SEM Thickness Range for Element Emission

BRUKER

Approximate accessible thickness range for individual layers of one element

For analysis by XRF emission:

- The higher the photon energy the thicker the films that can be analyzed
- The lower the photon energy the more sensitive the method is for thinner layers

Layer Thickness Analysis with micro-XRF/SEM Requirements

Requirements for layer analysis on the SEM:

- 1. Knowledge about the layer system is necessary (layer sequence)
- Layer calculation is based on pure element spectra intensity → stable EDS + XRF conditions
- For every layer a separate signal is required → the same element shouldn't be in different layers (or at least different X-ray series of this element should be available for analysis
- Tilt = 0, changing the Tilt angle will influence the TOA which isn't considered in XMethod

Coating Thickness Analysis on SEM with X-ray fluorescence XMethod

Method creation

 For many physical different structured samples such as bulks, coatings, light matrices

Method optimization

- By editing several details on the lines to investigate or the structure of the sample in the methods
- For bulk methods calibration ranges can be set

Method calibration

- Methods can applied based on fundamental parameter approach without any standard
- Standards can be utilized to enhance the precision or in order to build fully empirical calibrations

13

XMethod Method Setup

		METHOD EDITOR		1
LOGIN		ZnNi_Fe		
Jser: assword:	Admin	Method data Description ZnNI_Fe Type layer spectrum deconvolution Standard spectrum deconvol Comment	Layer parameters Name Compound Start thickness O.00 Unit µm (2) Fixed thickness Calc. mode Emission Normalize samole/standard Target value (%) Density © Default 7.43	Structure Layer Chemical elements
Easy to use m with all major screen Multiple users	ethod editor settings on one to allow only	Measurement parameters HV / kV 50 Collimator / mm 0.70 o Atmosphere Air Current / μA 800 Measure time /s 20 Smooth spectra . Calibration coefficients . 0 9.384257835-1 -4538298302E-1 Change parameters	User 0.00 IV Use tolerances? 4.50 Low thickness 4.50 High thickness 4.70 Target value 4.60 IV In Rec Co Ni Cu 2h Re Co Ni C	Element z Main line Start conc. Zn 30 KA 90.00 NI 28 KA 10.00
methods				<u>د-</u> >۳

XMethod Method Setup

LOGIN Structure Normation Admin Structure User: Layer **Chemical elements** layer1 0.00 Password: um (2) Emission Ok Cancel ver1 Zn Ni 0.00 Measurement parameters 4.50 4.70 + × 4.60 Structure Normation Calibration Layer parameters Element overview Structure Name layer1 **Chemical elements** Layer Compound Al Si P S Cl Ar Element Z Main line Start conc. Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Zn 30 KA 90.00 Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 28 KA 10.00 Start thickness Ni 0.00 Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Unit ÷ μm (2) Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Fixed thickness Calc. mode + Emission <- > 1 Normalize sample/standard Target value (%) 100.00 Starting values (to Density Oefault 7.43 accelerate computation) as O User 0.00 ayer1 Zn Ni Use tolerances? well as tolerances for results base Low thickness 4.50 Fe can be entered High thickness 4.70 Target value 4.60 + ×

XMethod Method Setup

Stro Stro Laye

ba

								?	
LOGIN			×						
lser: assword:	Admin			ers		St La	ructure ructure yer Chemical elemen	Calibration Spectrum	
		Ok	Cancel	Emission iple/standard i) 100.00 7.43					
		Measurement parameter	eters 🛛 🖓 Use tolera	0.00 nces? 4.50 4.70		bi	ise Fe		
ucture Normation Calibrat	tion Spectrum	Layer parameters		4.60	ELEMENT PROPERTIES	S EDITOR		+ ×	?
ucture er Chemical elements		Name	layer1		³⁰ Zn		Line data		
e <mark>r1 Zn Ni</mark> e Fe	E	Start thickness Unit Fixed thickness Calc. mode Normalize sample/ Target value (%) Density © Default © User ☑ Use tolerances? Low thickness	0.00 µm (2) ✓ Emission ✓ tandard 100.00 7.43 0.00 4.50	Ti V Cr Mn Zr Mp Mo Tc H To W Ref Ref Nd Th VR Nd Nd Nd Th Pa U Nd Nd	Parameters Element type Show element in res start conc. Unit Calculation mode Use for thickness ca Threshold density ⊙ Default ⊙ User ☑ Use tolerances? Low concentration ☐ High concentration ☐ Target value	Normal • sults 90.00 %(2) • Calculate • Iculation 0.0005 7.13 1.00 87 93 90.00	Main line Sub line Line Energy(keV) KA 8.637 KB 9.570	KA KB Vse Used lines VKA1,KA2 KK1,KB2,KB3,KB5	
		High thickness	4.70				•		
	+ ×	larget value	4.60					<- >	

16

XMethod Method Setup

M Type	Sub type	Supplier	the second s	ase Nilay	yer Au layer	
laver		not sporified	Use t	ase	4.38 0.500	
tayer		not specified	E.	-	1,96 0,052	
Show samples Sel	×t					
© All	<u> </u>				<u>-</u>	N
Cillion to constru			Shrach	re toornat	Calibration	-
Calibration samples	to a	4 4 : .	Struch Ni layer	re triomat	Calibration	
Calibration samples Gater Parameter No. Sample	ta W. SO	se se t callb.	Structs diam) Std	ce bicend	Calibration Algung Std	al
Calibration samples Deamster No. Sample 7 Au59 (M1996), Co 5 Au52, M1996), Co	tu W. SO Ju 1	ia Ge F calib, 	Mineh diam) Std 4,38 1,94	cellb. 4,38 1,56	Calibration Ma lower diguni Sad 8,550 9,052	cat 0,5 0,0
Cellbration samples Dane Paraneter No. Sample 7 Audio Nitele o 8 Audio Nitele o	14 14 14 15 15 1 1 1 1 1 1 1 1 1 1 1 1 1	16): 16 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Millayor dijan) Std 4,38 1,96	ce Proceed callb. 4,38 1,36	Calibration As layer figun) 3x8 9,560 8,062	cal 0.5 0.0
Calibration samples Daneter Paraneter No. Sample 7 Aurole Nation 8 Aurole Netter, co	10 10 10 10 10 10 10 10 10 10 10 10 10 1	idiin le Calib. 	Millinger (djim) Stit 4,38 1,04	callb. 4,38 1,36	Calibration Ref Dyce figun) Sat 9,560 9,052	cal 0.5 0.0
Calibration samples Orac Parateer Ro. Aussi Nation S Aussi Nation S Aussi Nation C Deviation	50 00 01 01 01 01 01 01 01 01 01 01 01 01	10	All layer digmi 50 4.38 1.99	ce Processi calib. 4,38 1,35	Calibration figure) Sold 8,560 8,662	cal 0,5 0,0
Calibration samples Dev Parameter Paramet	50 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		All layer Gam) Sol 4.38 1.99	or Decembra Gelle, 4,38 1,56	Calibration figure) Sold 8,560 8,662	cat 0.5 0.0
Calibration samples Draw Parameter No. Samplessen (P. Australianse (P. Australianse (P. Australianse (Deviation C			Mil Layer Glum) Std 4,34 1,04 0,09 Nil Layer (pm	or Decend	Califeration Relayer dipenj 9,560 9,560 9,952	cat 0.5 0.0
Cellbration samples Devention Parameter No. Samplessen () Parameter No. Samplessen () Pervation Cellbration Pervation Cellbration Pervation Cellbration () Pervation Cellbration () Pervation () Perv			Millerer dijun) dijun) dijun) dijun) dijun di di dijun di di dijun di di di di di di di di di di di di di di di di d	ar Deced	00 Calhadda Alane Alane 8,500 8,500 8,500 8,500	Cat 0.5 0.0
Calibration samples		0 anh, 1 anh, 	Millinger digma) Stat 4,32 1,69 Nil larger (gan	or Decembra Gette. 4.33 1.56	Colhection Autory Autor	Call 0.5 0.0
Calibration samples	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 ef 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	March	or Deced	Colheadon Autore Agunt 8,560 8,560 8,560	Call 0.5
Calibration samples	V V SO		A Larger Gama) Wata A Larger A Larger A Margare (gama)	a Deced	Colhected	Cat 0.5 0.0
Celibration samples Devention Autor States Autor States Devention Celibration spen Sum Ingention Sum Ing	V So V So V So V So V So V So V So V So	2 article and the article and	0.09		Colhedia	Call 0.5 0.0
	Show samples Selv Measured	show samples Select	Show samples Select	Show samples Select	Show samples Select	Show samples Select

Au_bondpads Normation Structure Structure Layer parameters Chemical elements Method data Laver Name Au layer Compound Description Au_bondpads Start thickness 0,000 Type Unit µm (3) layer **Fixed thickness** Calc. mode Spectrum deconvolution Emission Standard spectrum deconvol . Normalize sample/standard Comment Target value (%) 100.00 Au layer Au Density Default Nilaver O User N 0.00 Measurement parameters ☑ Use tolerances? Low thickness 0,220 HV / KV Target value 0,250 Collimator / mm 0.20 × 0.20 + × High thickness 0.300 Element overview 800 Current / µA 91 11 Bel 20 Na Mp ASPSOA Measure time /s Element Z Main line Start conc. K Ca Sc Ti V Cr Mn Fe Co N Cu Zn Ga Ge As Se Br Kr Au 79 LA 100.00 Smooth spectra Rb Sr Y Zr Hb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os 3r Pt Au Hg Ti Pb Bi Po At Rn Fr Ra Ac Ce Pr Nd Pm Sm Eu Gd To Dy Ho Er Tm Yo Lu Th Pa U No Pu An Cn Bk Cf Es for Md No Lr K- -8

- Calibration is automated to a great extent
- Optional choice of polynomial degrees, calibration ranges, or individual parameters to be added, weighted, or excluded
- Methods available via hot keys

Application examples

Layer Thickness Analysis with micro-XRF/SEM Example I: SnPb/Cu Solder bump

- Pb is a restricted material in consumer electronic devices
- But still used in some areas of medical (implants) or defense sector when reliability and durability are absolutely essential.

Example for solder bumps

Layer Thickness Analysis with micro-XRF/SEM Example I: SnPb/Cu Solder bump

Measurement points on SnPb standard , 60 sec acquisition time (real time)

 Standardless quantification for the SnPb coating gives sufficient results but can be improved by using standards!

	Substrate	Layer 1		
Spectrum	Cu [%]	hickn. [µm]	Sn [%]	Pb [%]
SnPb_Cu 107	100.00	8.78	91.48	8.52
SnPb_Cu 108	100.00	8.88	91.83	8.17
SnPb_Cu 109	100.00	8.91	91.38	8.62
SnPb_Cu 110	100.00	8.82	91.98	8.02
SnPb_Cu 111	100.00	8.71	91.88	8.12
SnPb_Cu 112	100.00	8.75	91.87	8.13
Mean value	100.00	8.81	91.74	8.26
Std dev.	0.00	0.07	0.24	0.24
Std dev. rel. [%]	0.00	0.85	0.26	2.94
Conf. interval	0.00	0.03	0.10	0.10

Normalized mass concentration [%]

- Consists of a layer structure of NiZn/Fe (Fe = substrate)
- Zn is used for corrosion and fire protection
- Ni protects the material against mechanical wear
- Our (unknown) sample:

Certified NiZn/Fe standard

NiZn (4.6 µm)

Fe

Step 1: Build a layer method in XMethod

Lu_	METHOD EDITOR			?
	1. Name the m	ethod	Structure	Structure Normation Calibration Spectrum
	Method data Description ZnNi_Fe_FP Type layer Spectrum deconvolution Bayes deconvolution Bayes deconvolution Comment Comment HV / kV S0 Collimator / mm 35 µm LENS Atmosphere Vacuum Current / µA 600	Layer parameters Name layer1 Compound • Start thickness 0.00 Unit µm (2) Fixed thickness • Calc. mode Absorption Normalize sample/standard ✓ Target value (%) 100.00 Density • © Default 3.65 User 0.00	Structure Layer Chemical elements 3. Define layer struc layer1 zn Ni base Fe Element overview	cture
	Measure time /s 20 Change parameters 2. Define measure	H U BE Na Mg K Ca Sc TI V Cr MH Fe Co N Cu 2h Ge Rb Sr V Nb M0 TC Ru Rh Pd Ag Cd In Ge Ba La HF Ta W Re Os Ir Pt Au Hg I Fr Ra Ac Ce Pr Hd Pm Sm Eu Gd Tb Dy H Th Pa U Ng Pu Am Cm Bc Cf E Surement	He Si P S: O F Ne Si P S: O A P S: O A Ge As Se Br Kr Zn 30 KA 90.00 % Bi Di OA At Ni 28 KA 10.00 % a Fm Md Mo Lr Se Se	4. Save the Method (XADF) for further use
	conditions			<- >M

?≣

Coating Thickness Analysis Example II: Galvanized Metal Sheet

Normalized mass concentration [%] Layer 1 Substrate Spectrum Fe [%] Thickn. [µm] In [%] Ni [%] 76.spx 100.00 3.37 85.91 14.09 3.34 85.83 14.17 77.spx 100.00 3.23 85.79 14.21 100.00 78.spx 3.29 85.83 14.17 79.spx 100.00 3.20 85.60 14.40 80.spx 100.00 3.34 85.81 14.19 81.spx 100.00 3.36 85.92 14.08 82.spx 100.00 83.spx 3.36 85.82 14.18 100.00 84.spx 100.00 3.50 85.99 14.01 300 µm MAG: 80x HV: 5 kV WD: 12 mm Px: 2.05 µ 3.35 85.97 14.03 85.spx 100.00 3.31 85.88 14.12 86.spx 100.00 100.00 3.24 85.74 14.26 87.spx 100.00 Mean value 3.32 85.84 14.16 Layer thickness Ni % Zn % 0.08 0.11 0.11 Std dev. 0.00 88,90% given 4.6 µm 11,10% Std dev. rel. [%] 0.76 0.00 2.37 0.12 Layer FP standard-free 85.84% 3.32 µm 14.16% Conf. interval 0.00 0.02 0.03 0.03

Step 2: Acquire spectra in ESPRIT (Object mode)

For this sample the standard- free FP is not accurate enough due to the secondary fluorescence effect (Zn excites Ni which overweight's the Ni concentration) \rightarrow thickness calculation is based on the Zn intensity since Zn is the main element \rightarrow **Method must be calibrated with standards!!**

Step 4: Measuring appropriated standards (with same layer structure)

METHOD EDIT	OR									?
ZnNi_Fe_te	est_except_4_6	ŧ.								
							Structu	re Normat	Calibration	Spectrum
		Calibration samples								
lethod data		Layer	base	layer1			1			
Description		Parameter	base	d(µm)		Zn(%)	Ni(%)			
ZnNi_Fe_test	except_4_6	No. Sample	W. Std	FP Std	FP	Std I	P Std	FP		
Type		9 13300Zn84_9Ni15_1	Fe 1 🗘 💳	- 13.30	8.80	84.90 8	1.85 15.10	18.15		
lavar	10	5 15000Zn88_2Ni11_8	Fe 1	- 15.00	9.88	88.20 8	5.94 11.80	14.06		
aye.		6 20600Zn83_2Ni16_8-	-Fe 1	20.60	12.89	83.20 7	9.34 16.80	20.66		
Spectrum deco	onvolution	4 46002H88_0Ni11_1 4		4.60	3.43	88.90 8	5.92 11.10	14.08		
Bayes deconv	volution -	7 4800Zn81_5Ni18_5-F	e 1-	4.80	3.57	81.50	7.11 18.50	22.89		
Comment										
limator / mm iosphere rent / µA	35 µm LENS 7 Vacuum 7 600 2	Deviation (0)			5.99		.02	4.02		FP calib.
asure time /s	20	N × %		FP layer1 (µm)						
		Normation type		21.535						
		. Norm target value	100	17.619				1		***
libration coeffic	cients	Calibration on the offset		15.682				1		
5		Use offset		13.704					0	
25496268		Calibration parameter		11.746						
/230150/46-2	4	Order of polynom 2		9.789			0			
				6 973						
				3915						0
				3.915 5.87	7.031	9,789 11,746	13,704	15.662 17.619	19.577 21.535	-
_										
C	tart	FD calci	lation							
			auuu							

After clicking "start FP calculation" button, the chart will be updated with the FP results. The calculated FP values will be plotted against the given values of the selected standards (thickness or concentration).

Given values differs to the measured values \rightarrow Calibration required!

09.06.2017

Step 4: Calibrate the method

After clicking the Calibration button, the chart will be updated with the calibrated results. The results should be much closer to the blue line now. Method can be saved afterwards as standard based XADF method.

Step 5: Quantify standard-based method

Normalized mass concentration [%]

	Substrate	Layer 1		
Spectrum	Fe [%]	Thickn. [µm]	Zn [%]	Ni [%]
76.spx	100.00	4.56	89.37	10.63
77.spx	100.00	4.51	89.27	10.73
78.spx	100.00	4.36	89.22	10.78
79.spx	100.00	4.44	89.28	10.72
80.spx	100.00	4.31	89.05	10.95
81.spx	100.00	4.52	89.26	10.74
82.spx	100.00	4.54	89.36	10.64
83.spx	100.00	4.54	89.27	10.73
84.spx	100.00	4.74	89.45	10.55
85.spx	100.00	4.53	89.41	10.59
86.spx	100.00	4.47	89.32	10.68
87.spx	100.00	4.36	89.16	10.84
Mean value	100.00	4.49	89.28	10.72
Std dev.	0.00	0.11	0.11	0.11
Std dev. rel. [%]	0.00	2.54	0.12	1.03
Conf. interval	0.00	0.03	0.03	0.03

	Layer thickness	Ni %	Zn %
given	4.6 µm	11,10%	88,90%
Layer FP standard-free	3.32 μm	14,16%	85,84%
calibrated with standards	4.49 μm	10,72%	89,28%

Layer Thickness Analysis with micro-XRF/SEM Example III: Au/Ni/Cu contact

- Popular layer system which is used for contacts in microelectronics
- For Higher- quality contacts also Pd is embedded as separate layer
- For cost reasons the precious metal coating are very thin and Ni is used as a diffusion barrier

Spectra of an Au-Ni/Cu layer system, acquisition time: 60 s

Coating Thickness Analysis Example III: Au/Ni/Cu contact

Normalized mass concentration [%]

		<u> </u>	_		
	Substrate	Layer 1		Layer 2	
Spectrum	Cu [%]	Thickn. [µm]	Ni [%]	Thickn. [nm]	Au [%]
Au/Ni/Cu 88	100.00	3.66	L00.00	112.14	100.00
Au/Ni/Cu 89	100.00	3.71	L00.00	111.43	100.00
Au/Ni/Cu 90	100.00	3.66	L00.00	114.56	100.00
Au/Ni/Cu 91	100.00	3.78	L00.00	112.43	100.00
Au/Ni/Cu 92	100.00	3.81	L00.00	110.46	100.00
Au/Ni/Cu 93	100.00	3.69	L00.00	104.50	100.00
Au/Ni/Cu 94	100.00	3.80	L00.00	109.37	100.00
Au/Ni/Cu 95	100.00	3.73	L00.00	101.50	100.00
Au/Ni/Cu 96	100.00	3.72	L00.00	113.71	100.00
Au/Ni/Cu 97	100.00	3.78	L00.00	102.39	100.00
Mean value	100.00	3.73	L00.00	109.25	100.00
Std dev.	0.00	0.06	0.00	4.74	0.00
Std dev. rel. [%]	0.00	1.52	0.00	4.34	0.00
Conf. interval	0.00	0.02	0.00	1.50	0.00

Layer Thickness Analysis with micro-XRF/SEM Example IV: AI/Si layer

Both samples mounted on graphite sample holder

Original sample 1: SEM image of a fracture edge of layer AI (bright) and substrate Si

SE image of the sample 1

- Both samples were mounted on a graphite samples holder to avoid any influences coming from the sample holder due to the higher information depth of X-rays
- Both samples have the same dimensions 1.5 mm x 670 µm
- The thickness of the layer is $\sim 2 \ \mu m$ for sample 1

Normalized mass concentration [%]						
	Substrate	Layer 1				
Spectrum	Si [%]	Thickn. [µm]	AI [%]			
Al-Si 1	100.00	2.51	100.00			
Al-Si 2	100.00	2.47	100.00			
Al-Si 3	100.00	2.43	100.00			
Al-Si 4	100.00	2.41	100.00			
Al-Si 5	100.00	2.46	100.00			
Al-Si 6	100.00	2.45	100.00			
Al-Si 7	100.00	2.44	100.00			
Al-Si 8	100.00	2.43	100.00			
Al-Si 9	100.00	2.41	100.00			
Al-Si 10	100.00	2.44	100.00			
Al-Si 11	100.00	2.41	100.00			
Al-Si 12	100.00	2.37	100.00			
Al-Si 13	100.00	2.30	100.00			
Mean value	100.00	2.43	100.00			
Std dev.	0.00	0.05	0.00			

Ch 0 Al

Intensity profile of the extracted EDS line scan

Layer Thickness Analysis with micro-**XRF/SEM** Example IV: AI/Si layer → Sample I

Layer Thickness Analysis with micro-XRF/SEM Example IV: AI/Si layer → sample 2

Example V: Analysis of solar cells by using Micro-XRF on SEM

Comparison of:

- SEM cross section micro XRF to calculate the layer thickness
- EDS micro XRF to calculate the layer composition

Layer Thickness Analysis with micro-XRF/SEM CIGS- wafer

CIGS- wafer sample background:

- The efficiency of solar cell is determined mainly by their chemical composition and physical structure
- Therefore the chemical composition is of particular interest for thin- film structures
- In most cases the absorber of the film cells is produced from CIGSstructures, which are Cu-In-Ga-Se or Cu-In-Ga-S compounds
- CIGS- solar cells are typically manufactured by deposition on glass substrates which are coated with a Mo- contact layer.
- For technology development and quality control during the manufacturing process it is important to check primarily composition but also thickness of these layers as well as their homogeneity
- A typical structure of a CIGS wafer is shown on the next slide

Coating Thickness Analysis CIGS- wafer – structure and sample prep

Typical structure of a CIGS solar cell

- Our sample contains of the float glass (substrate), Mo (1st layer), CIGS (2nd layer)
- No passivation layer
- Sample courtesy: PTB (Physical technical federation Berlin)

CIGS- wafer sample preparation for XRF analysis

Coating Thickness Analysis CIGS- wafer – SEM layer observation

09.06.2017

Coating Thickness Analysis CIGS- Wafer – EDS analysis

Extracted line scan area of the absorber (CIGS) for Cu, Ga, Se, In including concentration in wt%

Layer thickness results taken from the SEM cross section observation and quantification results of the CIGS layer taken from EDS analysis

Mathad	Lavor	Thickness	Composition /wt.%			
Method	Layer	/nm	Cu	Ga	Se	In
SEM	Mo	440				
EDS	CIGS	2400	22	6	46	26

Quantification of CIGS-layer

Coating Thickness Analysis CIGS- wafer – XRF analysis

Quantification of CIGS-layer								
Method	Laver	Thickness	Composition /wt.%					
		/nm	Cu	Ga	Se	In		
Micro-XRF	Mo	424						
Micro-XRF	CIGS	2220	21	5.4	47.3	26.4		

Normalized mas	s concentra	ation [%]		-				
	Substrate	Layer 1		Layer 2				
Spectrum	Si [%]	Thickn. [nm]	Mo [%]	Thickn. [µm]	Cu [%]	In [%]	Ga [%]	Se [%]
CIGS 1	100.00	422.99	100.00	2.20	20.88	26.45	5.41	47.26
CIGS 2	100.00	420.67	100.00	2.21	20.94	26.31	5.41	47.35
CIGS 3	100.00	420.73	100.00	2.21	20.93	26.24	5.37	47.45
CIGS 4	100.00	418.65	100.00	2.20	20.92	26.42	5.38	47.27
CIGS 5	100.00	423.51	100.00	2.22	20.86	26.25	5.40	47.49
CIGS 6	100.00	421.52	100.00	2.21	20.96	26.37	5.37	47.30
CIGS 7	100.00	419.95	100.00	2.20	20.97	26.32	5.33	47.37
CIGS 8	100.00	424.57	100.00	2.22	21.04	26.39	5.40	47.17
CIGS 9	100.00	425.89	100.00	2.22	20.88	26.55	5.38	47.19
CIGS 10	100.00	428.78	100.00	2.23	20.88	26.45	5.37	47.31
CIGS 11	100.00	424.12	100.00	2.22	20.98	26.37	5.40	47.25
CIGS 12	100.00	420.95	100.00	2.21	20.95	26.31	5.41	47.33
CIGS 13	100.00	420.76	100.00	2.21	21.04	26.14	5.40	47.43
CIGS 14	100.00	425.46	100.00	2.23	20.88	26.51	5.42	47.19
CIGS 15	100.00	427.83	100.00	2.22	20.96	26.38	5.37	47.29
CIGS 16	100.00	420.92	100.00	2.23	21.22	26.15	5.36	47.27
CIGS 17	100.00	429.58	100.00	2.24	20.97	26.52	5.39	47.12
CIGS 18	100.00	426.31	100.00	2.22	21.03	26.19	5.37	47.41
CIGS 19	100.00	420.22	100.00	2 22	20.93	26.29	5 34	47 43
CIGS 20	100.00	428.18	100.00	2.23	20.93	26.29	5.43	47.34
Mean value	100.00	423.58	100.00	2.22	20.96	26.35	5.39	4/.31
Std dev.	0.00	3.34	0.00	0.01	0.08	0.12	0.03	0.10
Std dev. rel. [%]	0.00	0.79	0.00	0.49	0.38	0.45	0.48	0.21
Conf. interval	0.00	0.75	0.00	0.00	0.02	0.03	0.01	0.02

Coating Thickness Analysis Comparing XRF – SEM thickness results

Quantification o	f CIGS-layer						
Method	Layer	Thickness /nm	Composition /wt.%				
			Cu	Ga	Se	In	
SEM	Мо	440					
Micro-XRF	Mo	424					
EDS	CIGS	2400	22	6	46	26	
Micro-XRF	CIGS	2220	21	5.4	47.3	26.4	

Conclusion:

- Measurements results agree very well between SEM layer thickness observation and
- for calculating the composition of the CIGS between EDS and XRF.

Summary Layer Thickness Analysis with micro-XRF/SEM

- XMethod software package for easy setup of analytical methods
- XRF can be utilized for coating thickness analysis of multilayer stacks
- Overall thickness of layer stack is limited (40 μm)
- Method editor for easy setup of wide range of methods, including option to choose lines to analyze
- Composition of multiple layers can be characterized
- Fundamental Parameter allows standard-less approach
- Standards can be applied in order to enhance precision

Live demonstration

Live demonstration USB stick

Areas of interest:

- 1. Au/Ni/Cu contact pins
- 2. USB housing \rightarrow Ni/Cu/Fe

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*. More Information

For more information, please contact us:

max.buegler@bruker.com

stephan.boehm@bruker.com

info.bna@bruker.com

Innovation with Integrity