Advanced elemental analysis of geological samples using QUANTAX WDS for SEM



Bruker Nano Analytics, Berlin, Germany Webinar, April 25, 2019



Innovation with Integrity

### Presenter





Dr. Michael Abratis

Sr. Application Scientist WDS, Bruker Nano Analytics, Berlin, Germany

# Advanced elemental analysis of geological samples using QUANTAX WDS for SEM



#### OUTLINE:

- QUANTAX WDS the principles
- Full quantitative analysis with QUANTAX WDS
- Advanced applications showing
  - trace element determination
  - high spectral resolution
  - trace element determination requiring high spectral resolution

# QUANTAX WDS System Components

QUANTAX WDS: integral part of the QUANTAX family XSense<sup>™</sup> WD spectrometer Signal processing unit SVE 6 **ESPRIT 2** 8 pt (200 kgps) 208 kgps 210 kgps 15.0 w 0,0 w Norden w/ Menong w/ Associating MF 9 COLMONY .



### Spectrometer comparison Advantages of WDS over EDS





Compared with EDS the WDS shows:

- substantially higher spectral resolution (typically 4 20 eV FWHM)
- enhanced P/B-ratios, i.e. lower detection limits
- outstanding sensitivity for light elements including Be, B



### XSense WD Spectrometer Setup and Working Principle



- Parallel Beam Optic (PBO) transforms X-rays diverging from the sample into a parallel beam
- Polychromatic beam undergoes Bragg diffraction at flat analyzer crystal
- Angle O between beam and crystal surface and crystal lattice constant 2d determines the energy that passes through to the detector
- X-ray detection by a flow proportional counter





### Application of QUANTAX WDS Analyzing peridotite



Peridotite (ultramafic rock)

- Olivine (OI)
- Orthopyroxene (Opx)
- Spinel (Sp)
- Clinopyroxene

Full quantitative mineral analysis by WDS on SEM

Sample courtesy of Prof. Giancarlo Capitani, University of Milano, Italy



BSE image of peridotite

## Full quantitative analysis by WDS Olivine, pyroxene and spinel in peridotite



| Element           | X-ray line   | Diffractor | Standard           | Peak time |
|-------------------|--------------|------------|--------------------|-----------|
| Mg                | Ka           | TAP        | Olivine            | 30 s      |
| AI                | Ka           | TAP        | Pyrope             | 30 s      |
| Si                | Ka           | PET        | Diopside           | 30 (60) s |
| Са                | Ka           | PET        | Diopside           | 60 s      |
| Ti                | LI           | BRML80     | Rutile             | 30 s      |
| Cr                | LI           | BRML30     | $Cr_2O_3$          | 30 s      |
| Mn                | La           | TAP        | Rhodonite          | 30 s      |
| Fe <sup>1,2</sup> | La           | TAP        | Olivine            | 30 s      |
| Fe <sup>3</sup>   | La           | TAP        | Almandine          | 30 s      |
| Ni                | La           | TAP        | Ni <sub>2</sub> Si | 60 s      |
| Zn                | La           | TAP        | Willemite          | 60 s      |
| 1: Olivine, 2:    | OPX, 3: Spin | el         | 20 k\              | / 20 nA   |



BRUKER

### Comprehensive spectrum by EDS Selective P/B measurements by WDS





EDS spectrum indicates elements

WDS P/B for quantification

### Full quantitative analysis by WDS Olivine in peridotite



#### Stoichiometric concentrations in %

| Spec-<br>trum | MgO   | SiO <sub>2</sub> | FeO   | NiO  | Sum    |
|---------------|-------|------------------|-------|------|--------|
| N1_1          | 47.57 | 38.25            | 15.61 | 0.24 | 101.67 |
| N1_ 3         | 45.35 | 37.73            | 15.56 | 0.28 | 98.92  |
| N1_4          | 47.13 | 37.99            | 15.17 | 0.24 | 100.53 |
| N1_6          | 45.93 | 37.82            | 15.02 | 0.26 | 99.03  |
| N1_7          | 46.88 | 37.71            | 14.71 | 0.31 | 99.61  |
| N1_ 8         | 49.00 | 38.24            | 14.71 | 0.25 | 102.20 |
| N1_13         | 46.46 | 37.69            | 14.99 | 0.27 | 99.40  |
| N1_ 14        | 47.48 | 37.87            | 15.24 | 0.27 | 100.86 |
| N1_ 15        | 47.50 | 37.92            | 15.10 | 0.26 | 100.77 |
| N1_ 27        | 46.06 | 37.83            | 15.93 | 0.30 | 100.12 |
| Mean          | 46.94 | 37.90            | 15.20 | 0.27 | 100.31 |
| Sigma         | 1.04  | 0.20             | 0.39  | 0.02 | 1.10   |
| Sigma<br>Mean | 0.33  | 0.06             | 0.12  | 0.01 | 0.35   |



### Full quantitative analysis by WDS Orthopyroxene in peridotite



#### Stoichiometric concentrations in %

| Spec-<br>trum | MgO   | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | FeO   | CaO  | Sum    |
|---------------|-------|--------------------------------|------------------|-------|------|--------|
| 10            | 33.63 | 1.94                           | 54.27            | 11.78 | 0.31 | 101.94 |
| 11            | 32.46 | 1.73                           | 54.15            | 9.93  | 0.27 | 98.53  |
| 12            | 31.70 | 1.77                           | 53.57            | 10.14 | 0.31 | 97.49  |
| 13            | 32.01 | 1.85                           | 53.55            | 10.66 | 0.27 | 98.35  |
| 15            | 31.91 | 1.24                           | 54.58            | 11.52 | 0.27 | 99.50  |
| 16            | 31.83 | 1.57                           | 53.66            | 11.76 | 0.21 | 99.03  |
| 17            | 31.79 | 1.69                           | 55.06            | 11.69 | 0.24 | 100.47 |
| 19            | 31.14 | 1.45                           | 53.82            | 11.38 | 0.34 | 98.14  |
| 20            | 31.95 | 1.83                           | 54.00            | 11.59 | 0.26 | 99.64  |
| 21            | 32.13 | 1.58                           | 53.96            | 10.96 | 0.27 | 98.90  |
| 22            | 33.55 | 1.75                           | 54.41            | 11.42 | 0.30 | 101.43 |
| Mean          | 32.19 | 1.67                           | 54.09            | 11.17 | 0.28 | 99.40  |
| Sigma         | 0.76  | 0.20                           | 0.46             | 0.66  | 0.04 | 1.39   |
| Sigma<br>Mean | 0.23  | 0.06                           | 0.14             | 0.20  | 0.01 | 0.42   |



### Full quantitative analysis by WDS Spinel in peridotite



#### Stoichiometric concentrations in %

| Spec-<br>trum | MgO   | Al <sub>2</sub> O <sub>3</sub> | FeO   | Cr <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | MnO  | Sum    |
|---------------|-------|--------------------------------|-------|--------------------------------|------------------|------|--------|
| 1             | 13.21 | 42.88                          | 24.79 | 13.35                          | 3.22             | 1.31 | 98.76  |
| 2             | 13.23 | 42.42                          | 25.43 | 13.85                          | 3.51             | 0.57 | 99.00  |
| 3             | 13.52 | 42.93                          | 25.33 | 14.11                          | 3.48             | 1.18 | 100.54 |
| 4             | 12.88 | 41.33                          | 25.16 | 13.70                          | 3.27             | 1.01 | 97.36  |
| 5             | 12.14 | 39.51                          | 25.58 | 14.34                          | 3.42             | 0.83 | 95.81  |
| 7             | 12.35 | 43.03                          | 27.32 | 12.97                          | 3.32             | 0.74 | 99.73  |
| 8             | 13.01 | 42.12                          | 27.16 | 14.32                          | 3.53             | 0.72 | 100.85 |
| Mean          | 12.90 | 42.03                          | 25.82 | 13.81                          | 3.39             | 0.91 | 98.86  |
| Sigma         | 0.50  | 1.26                           | 1.00  | 0.51                           | 0.12             | 0.27 | 1.79   |
| Sigma<br>Mean | 0.19  | 0.48                           | 0.38  | 0.19                           | 0.05             | 0.10 | 0.68   |

Low totals: missing elements?



### Spinel in peridotite Trace element detection by WDS







BSE image of peridotite

WDS energy range scans for Si and Zn

### Full quantitative analysis by WDS Spinel in peridotite



| Spec-<br>trum | MgO   | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | FeO   | Cr <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | MnO  | NiO  | ZnO  | Sum    |
|---------------|-------|--------------------------------|------------------|-------|--------------------------------|------------------|------|------|------|--------|
| 1             | 13.21 | 42.88                          | 0.03             | 24.79 | 13.35                          | 3.22             | 1.31 | 0.18 | 0.38 | 99.35  |
| 2             | 13.23 | 42.42                          | 0.05             | 25.43 | 13.85                          | 3.51             | 0.57 | 0.10 | 0.39 | 99.54  |
| 3             | 13.52 | 42.93                          | 0.04             | 25.33 | 14.11                          | 3.48             | 1.18 | 0.08 | 0.47 | 101.13 |
| 4             | 12.88 | 41.33                          | 0.03             | 25.16 | 13.70                          | 3.27             | 1.01 | 0.05 | 0.39 | 97.83  |
| 5             | 12.14 | 39.51                          | 0.10             | 25.58 | 14.34                          | 3.42             | 0.83 | 0.14 | 0.40 | 96.45  |
| 7             | 12.35 | 43.03                          | 0.04             | 27.32 | 12.97                          | 3.32             | 0.74 | 0.02 | 0.48 | 100.27 |
| 8             | 13.01 | 42.12                          | 0.05             | 27.16 | 14.32                          | 3.53             | 0.72 | 0.08 | 0.50 | 101.48 |
| Mean          | 12.90 | 42.03                          | 0.05             | 25.82 | 13.81                          | 3.39             | 0.91 | 0.09 | 0.43 | 99.44  |
| Sigma         | 0.50  | 1.26                           | 0.03             | 1.00  | 0.51                           | 0.12             | 0.27 | 0.05 | 0.05 | 1.79   |
| Sigma<br>Mean | 0.19  | 0.48                           | 0.01             | 0.38  | 0.19                           | 0.05             | 0.10 | 0.02 | 0.02 | 0.68   |

#### Stoichiometric concentrations in %



### QUANTAX WDS Resolving common overlaps in EDS microanalysis



| Element        | Interferences                 | ∆eV    | Samples or applications where the        |  |  |  |  |
|----------------|-------------------------------|--------|------------------------------------------|--|--|--|--|
| and line       | with                          |        | overlaps are found                       |  |  |  |  |
| Cu-L           | Na-Kα                         | 18     | Biological samples (grid)                |  |  |  |  |
| As-L           | Na-Kα                         | 79     | Biological samples (stain or fixative)   |  |  |  |  |
| Ag-L           | CI-Kα                         | 10     | Biological samples (stain or fixative)   |  |  |  |  |
| Ru-L           | S-Κα                          | 54     | Biological samples (stain or fixative)   |  |  |  |  |
| Os-M           | Al-Kα                         | 5      | Biological samples (stain or fixative)   |  |  |  |  |
| U-M            | К-Кα                          | 22     | Biological samples (stain or fixative)   |  |  |  |  |
| Sr-Lα          | Si-Kα                         | 31     | Silicates (feldspars in particular)      |  |  |  |  |
| Υ-Lβ           | Ρ-Κα                          | 18     | Phosphates                               |  |  |  |  |
| Υ-Lβ           | Zr-Lα                         | 46     | Silicates (zircon), oxides (zirconia)    |  |  |  |  |
| <b>S-Κα,</b> β | Mo-L $\alpha$ ; Pb-M $\alpha$ | 14; 38 | Minerals, lubricants, sulfides, sulfates |  |  |  |  |
| Τί-Κβ          | ν-κα                          | 20     | Steels, Fe-Ti oxides                     |  |  |  |  |
| <b>V-K</b> β   | Cr-Kα                         | 13     | Steels                                   |  |  |  |  |
| Cr-Kβ          | Mn-Kα                         | 47     | Steels                                   |  |  |  |  |
| Mn-Kβ          | Fe-Kα                         | 87     | Steels                                   |  |  |  |  |
| Fe-Kβ          | Со-Ка                         | 128    | Steels, magnetic alloys                  |  |  |  |  |
| <b>Co-K</b> β  | Νί-Κα                         | 169    | Steels, hard surfacing alloys            |  |  |  |  |
| W-Μα,β         | Si-Kα,β                       | 35     | Semiconductor processing                 |  |  |  |  |
| Τа-Μα,β        | Si-Kα,β                       | 27     | Semiconductor processing                 |  |  |  |  |
| Τί-Κα          | Ba-Lα                         | 45     | Optoelectronics, silicates               |  |  |  |  |
| As-Kα          | Pb-Lα                         | 8      | Pigments                                 |  |  |  |  |

Overlaps known from biological, geological and material sciences and industries

Modified after Goldstein et al. (2007). Scanning Electron Microscopy and X-Ray Microanalysis. Springer

### QUANTAX WDS and EDS Comparison of WDS and EDS resolution



| Element | Atomic | X-ray | Energy | FWHM     | WDS        | FWHM     | Resolution  |
|---------|--------|-------|--------|----------|------------|----------|-------------|
|         | No.    | line  | [keV]  | EDS [eV] | diffractor | WDS [eV] | improvement |
| Si      | 14     | Κα    | 1.740  | 75       | PET        | 3.6      | 21x         |
| Р       | 15     | Κα    | 2.014  | 77       | PET        | 5        | 15x         |
| S       | 16     | Κα    | 2.307  | 85       | PET        | 7        | 12x         |
| Y       | 39     | Lα    | 1.922  | 82       | PET        | 6.5      | 13x         |
| Zr      | 40     | Lα    | 2.042  | 83       | PET        | 7.2      | 12x         |
| Мо      | 42     | Lα    | 2.293  | 87       | PET        | 9.5      | 9x          |
| Та      | 73     | Μα    | 1.712  | 71       | PET        | 6        | 12x         |
| W       | 74     | Μα    | 1.775  | 74       | PET        | 6.4      | 12x         |
| Hg      | 80     | Μα    | 2.195  | 80       | PET        | 9        | 9x          |
| Pb      | 82     | Μα    | 2.345  | 91       | PET        | 12       | 8x          |

## Galena in sulfide deposits Spectral and spatial resolution matter!





Micro-grains of galena (PbS) besides other minerals

A small analytical volume is crucial!

Sulfide-bearing rock from active submarine hydrothermal field at Tonga island arc (SO192/2)

Sample curtesy of Dr. Manuel Keith, GeoZentrum Nordbayern, Erlangen, Germany

### Galena in sulfide deposits Effect of HV on spatial resolution



 Monte Carlo electron-trajectory simulations of interaction volume in galena as function of primary beam energy



With higher primary electron energy penetration depth is increasing and spatial resolution of the analysis is decreasing

## Galena in sulfide deposits Spectral resolution of WDS vs. EDS





WDS resolves the individual peaks of S and Pb in the X-ray spectrum

| Element | FWHM                  | FWHM                  |
|---------|-----------------------|-----------------------|
| line    | EDS [eV] <sup>1</sup> | WDS [eV] <sup>2</sup> |
| S-Κα    | 85                    | 6.0                   |
| Pb-Mα   | 91                    | 11.9                  |

1 = determined on XFlash 6|30 using peak fitting for  $\alpha$  and  $\beta$ line separation

2 = determined with a PET and XSense

 $\Delta$  S-K $\alpha$  – Pb-M $\alpha$ : 38 eV

### Galena in sulfide deposits Quantitative results by QUANTAX WDS



|             |       | Mass % | Normalize | d mass % | Atomic mass % |       |       |  |  |
|-------------|-------|--------|-----------|----------|---------------|-------|-------|--|--|
| Spectrum    | S     | Pb     | Sum       | S        | Pb            | S     | Pb    |  |  |
| Spectrum 1  | 13.41 | 86.04  | 99.46     | 13.49    | 86.51         | 50.19 | 49.81 |  |  |
| Spectrum 2  | 13.14 | 85.30  | 98.43     | 13.35    | 86.65         | 49.88 | 50.12 |  |  |
| Spectrum 3  | 13.30 | 85.44  | 98.74     | 13.47    | 86.53         | 50.14 | 49.86 |  |  |
| Spectrum 4  | 13.46 | 86.35  | 99.81     | 13.48    | 86.52         | 50.18 | 49.82 |  |  |
| Spectrum 5  | 13.35 | 85.49  | 98.84     | 13.51    | 86.49         | 50.23 | 49.77 |  |  |
| Spectrum 6  | 13.40 | 86.06  | 99.46     | 13.47    | 86.53         | 50.15 | 49.85 |  |  |
| Spectrum 7  | 13.51 | 85.32  | 98.84     | 13.67    | 86.33         | 50.57 | 49.43 |  |  |
| Spectrum 8  | 13.29 | 86.59  | 99.88     | 13.31    | 86.69         | 49.79 | 50.21 |  |  |
| Spectrum 9  | 13.36 | 85.96  | 99.32     | 13.45    | 86.55         | 50.10 | 49.90 |  |  |
| Spectrum 10 | 13.45 | 85.70  | 99.16     | 13.57    | 86.43         | 50.35 | 49.65 |  |  |
| Mean (n=10) | 13.37 | 85.83  | 99.19     | 13.48    | 86.52         | 50.16 | 49.84 |  |  |
| Sigma       | 0.11  | 0.45   | 0.48      | 0.10     | 0.10          | 0.22  | 0.22  |  |  |
| SigmaMean   | 0.03  | 0.14   | 0.15      | 0.03     | 0.03          | 0.07  | 0.07  |  |  |

### Trace element Sr in plagioclase High resolution and sensitivity required!





Plagioclase is the major mineral phase in this volcanic rock

Trachyte from Savo in the Solomon Islands (SW Pacific)

Sample curtesy of Dr. Daniel Smith, University of Leicester, UK

### Trace element Sr in plagioclase EDS spectrum





### Trace element Sr in plagioclase Spectral resolution of WDS vs. EDS





### Trace element Sr in plagioclase Combined mapping by EDS & WDS



EDS



Major element Ca

Trace element Sr

WDS

Combining EDS and WDS provides comprehensive information

### Summary of todays Webinar QUANTAX WDS



- Principles of PB WDS on SEM
- High spectral resolution
- Major to trace element determination
- Qualitative and quantitative analyses
  - Objects (points)
  - Profiles
  - Mapping
- Can be used alone or in combination with EDS
- A powerful tool for analyzing geological samples





# **Are There Any Questions?**

Please type in the questions you might have in the Q&A box and press *Send*.



### Innovation with Integrity