Multi-scale in-situ non-destructive micro-XRF scanning analysis: Implications for ore mineralogy, petrogenesis and micro-metallurgical assessments BRUKER GTK

Bruker Nano Analytics, Berlin, Germany Webinar, May 19th, 2020

Presenters

Andrew H. Menzies, PhD

Sr. Applications Geology and Mining, Bruker Nano Analytics, Berlin, Germany

Alan R. Butcher, PhD

Professor of Geomaterials & Applied Mineralogy, Espoo, Finland

Nick Cook, PhD, FAusIMM, FGS

President Mawson Resources Ltd, Vancouver, Canada

Acknowledgements

Tagle, R. Buegler, M. Reinhardt, F.

Dehaine, Q. Cook, N. Kuva, J. Sayab, M. Sorjonen-Ward, P. Raič, S. Molnar, F. Michaux, S.

Botha, P. Rollinson, G. Sardisco, L. Jones, S.

Lundström, M.

Multi-scale in-situ non-destructive micro-XRF scanning analysis: Implications for ore mineralogy, petrogenesis and micro-metallurgical assessments

- The exploration process and metallurgical understanding occurs on scales that vary by numerous orders of magnitude.
- An important link in this chain is the transition from samples collected in the field to analysis in the laboratory.
- Detailed characterisation of samples that employs geoanalytical techniques to achieve multi-scale, multi-modal, and multi-dimensional information (involving the integration of 2D, 3D and 4D imaging and analysis of rock samples).

Multi-scale Characterisation Workflow

Butcher AR (2020) Upscaling of 2D mineralogical information to 3D volumes for geoscience applications using a multi-scale, multimodal and multi-dimensional approach. *EMAS 2019*, *Conference Proceedings Volume, Trondheim*, 19-23 May 2019.

New Characterization Workflow

Butcher AR (2020) Upscaling of 2D mineralogical information to 3D volumes for geoscience applications using a multi-scale, multimodal and multi-dimensional approach. *EMAS 2019*, *Conference Proceedings Volume, Trondheim*, 19-23 May 2019.

Micro-XRF analysis: Introduction

- Little to no sample preparation
- Non-destructive
- Elemental information
- Small spot analysis
- Information from within the sample
- Meso-scale samples : Micro-scale information
- Quantification
- Mineralogy

BRUKER

Spatial Resolution and Analyzed Volume: Transmission and Attenuation

The transmission of X-rays is important for excitation of samples as well as for the fluorescence radiation.

Penetration depth: the depth that can still be excited

Information depth: the depth from which fluorescence X-rays can still reach the detector

Y-ray tube

Micro-XRF: Comparison Analytical Parameters and Conditions

Parameter	EDS: E-beam (SEM-EDS)	WDS: E-beam (SEM-WDS)	EDS: Micro-XRF	
Analyzed Volume	Ø: few µm Information depth: µm; (depending primarily on electron energy)	Ø: few µm Information depth: µm; (depending primarily on electron energy)	Ø: 15-30 µm Information depth: µm to mm; (depending on analysed element and matrix)	
Detectable Elements	Atomic number Z ≥ 4 (beryllium)	Atomic number $Z \ge 4$ (beryllium)	Atomic number $Z \ge 6$ (carbon)	
Energy range	K- L –M – Lines (up to 20 keV)	70 eV – 3.6 keV (L- M- Lines)	K- L –M – Lines (up to 40 keV)	
Concentration Range	Down to 1000 ppm	Down to 100 ppm	Down to 10 ppm	
Quantification	Standard less and Standard based	Standard based	Standard less and standard based	
Data collection	Simultaneously	Sequentially	Simultaneously	
Sample Preparation	Sample needs to be electrically conductive (commonly carbon- coated), polishing required	Sample needs to be electrically conductive (commonly carbon- coated), polishing required	Electrical Conductivity not required, samples don´t need to be polished	
Sample Stress	Heating due to absorbed electrons	Heating due to absorbed electrons	Minimal	
Typical SEM beam current	Variable	Variable > 10 nA	N/A	

Micro-XRF analysis: Sample Types

Micro-XRF analysis: Hyperspectral Datasets

AMICS: Automated Mineralogy How does AMICS work?

X-ray Analysis

• Acquires spectrum for each segment

Classification

· Identifies minerals based on spectral information

Finland – Kuohenmaa Orbicular Monzonite: Rock Sample 5 kg

Kuohenmaa Quartz Monzonite Boulder

Sample courtesy of Aku Heinonen

Finland – Rapakivi Granite: Drill Core – 20 cm in Length

Finland – Kylmäkoski Rock Sample: 3 kg and 20 cm

Finland – Kylmäkoski Elemental Mapping

Orbicular Peridotite Kylmäkoski nickel-copper deposit Elemental Images

Finland - Outokumpu Rock Sample: 5 micron mapping

Geometallurgy: Traceability Workflow

Integrated approach to improve value chain and responsible sourcing

Q. Dehaine, S. Michaux, J. Pokki, M. Kivinen and A.R. Butcher, *Battery minerals from Finland: Improving the supply chain for the EU battery industry using a geometallurgical approach*, European Geologist 49 (*In Press*).

Multi-scale in-situ non-destructive micro-XRF scanning analysis: Implications for ore mineralogy, petrogenesis and micro-metallurgical assessments

- This includes characterization of:
 - Mineralogy and Distribution of Element(s) of Interest(s) and associated metals/elements,
 - Key mineralogical/geometallurgical ore properties,
 - Mineral associations
 - Micro-structural relationships
- The end result is an enhanced perspective on the commercial process mineralogy, incorporating details about liberation of both ore and gangue minerals at the early stages of any given project.

Finland – Raja Prospect, Rajapalot Project Exploration Project: Au-Co (Mawson Oy)

Finland – Raja Prospect Context and Objectives

Finland – Raja Prospect, Rajapalot Project Exploration Project: Au-Co (Mawson Oy)

Context

The work forms part of the **BATCircle Project** currently underway at GTK, with Mawson Oy as a Partner, as well as other **geometallurgical research** at **GTK** in collaboration with Mawson Resources.

Objectives, Scientific and Analytical Question(s)

- Identify Co distribution
- Identify Co mineralogy
- Determine Co mineral associations
- Determine Co mineralogy size distribution

Finland – Raja Prospect Context and Objectives

Minerals of economic interest at Rajapalot Project

Precious Metal Minerals Gold

Native gold – electrum

Battery Minerals

Cobalt
Cobaltite:CoAsSLinnaeite:(Co+2Co+32S4)Cobaltian pentlandite:(Co, Ni, Fe)9S8

Co-Pyrite Co-Pyrrhotite

Copper Chalcopyrite

Finland – Rompas-Rajapalot Project Sample Location and Geology

Finland – Rajapalot Project Sample Location and Geology

Location of **Raja Prospect**, within the **Rajapalot Project**, and position of drill hole **PAL0163** relative to gold-bearing units, with region of interest marked by a ring.

Source: Mawson Resources http://mawsonresources.com/

Finland – Raja Prospect Sample Description

Finland – Raja Prospect Drill Core: High cobalt intersection

Total Assay: Co 9769.3 ppm

Finland – Raja Prospect Multi-elemental map

PAL0163 - 418.29 m

Finland – Raja Prospect Multi-elemental map

PAL0163 - 418.29 m

Linnaeite is associated with pyrrhotite; with patchy occurrences of cobaltite

Finland – Raja Prospect Single-elemental map

PAL0163 - 418.29 m

Micro-XRF Analytical Conditions

Change in Resolution and Dwell Time impact Analytical Time: Important to define what is the goal of analysis prior to Measurement

Variable Resolution

Finland – Raja Prospect Multi-elemental map

PAL0163 - 418.29 m

Finland – Raja Prospect Large-area to small-area maps

PAL0163 - 418.29 m

Finland – Raja Prospect Small-area maps

PAL0163 - 418.29 m

20 micron pixel scan

Finland – Raja Prospect Large-area to small-area maps

PAL0163 - 418.29 m

Finland – Raja Prospect Large-area to small-area maps

PAL0163 - 418.29 m

Finland – Raja Prospect Mineralogy, Petrogenesis & Micro Geometallurgy Multi-scale, multi-modal, multi-dimensional

Finland – Raja Prospect, Rajapalot Project Exploration Project: Au-Co (Mawson Oy) AMICS: Mineralogy

Finland – Raja Prospect AMICS: Mineralogy Map

Finland – Raja Prospect AMICS: Grain Size Distribution - Linnaeite (Co₃S₄)

Linnaeite $(Co^{+2}Co^{+3}S_4)$

Cobaltite (CoAsS)

Scan 180 x 40 mm

Pyrrhotite	
Linnaeite	
Chalcopyrite	100
Cobaltite	
Titanite	80
Rutile	
Apatite	
Zircon	
Quartz	
Albite	N9442846448484
Phlogopite	W+ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
K-Feldspar	****
Amphibole	***************************************
Chlorite	
Others	

Mineral Size Distribution - [Grain Layer]:[Linnaeite]:[Equivalent Circle]:[SEM Default Sieve Sizes]

Finland – Raja Prospect AMICS: Grain Size Distribution - Cobaltite (CoAsS)

Linnaeite $(Co^{+2}Co^{+3}{}_2S_4)$ Cobaltite (CoAsS)

Scan 180 x 40 mm

Pyrrhotite							
Linnaeite							
Chalcopyrite							
Cobaltite		and a	100	Mineral Size D	istribution - [Grain Layer]:[Col	baltite]:[Equivalent Circle]:[SEM Defa	ault Sieve Sizes]
Titanite		64.0					
Rutile		0 3 4	80 -	P-Value	Size (microns)	1	
Apatite		₩4 € , #		P-80	596.4	4	
Zircon	-	- 32 - 5 V	60 -	P-50	300 5		
Quartz		A C D She C De (1 St be A	/t%	T-50	300.3		
Albite		0[3 (())	> 40 -	P-20	127.0		
Phlogopite		erener23=62~4363				1	
K-Feldspar		6JEDJ#9JX47864	20 -		1		
Amphibole		************************			and the second sec		
Chlorite		**************************************					
Others		5 4 7 1 4 6 7 9 9 9 9 9 1 5 6 7 7 9 1 9 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1	10	100 Sieve Size (u	1000	10000

Elemental Distribution: How is the element of interest (EOI)

distributed in each mineral? E.g. Co in Linnaeite vs Cobaltite.

Mineral Association: Identify how the minerals are associated with each-other, e.g. Cobaltite and Linnaeite and Pyrrhotite etc.

Finland – Raja Prospect AMICS: Assay Calculations - Comparison

Micro XRF AMICS: Assay Calculations

Total Spectrum (Whole Rock)

Co concentration: 1.04% (10400 ppm)

Deconvolution of Co (Cobalt) is important in the presence of Fe (Iron)

Micro XRF AMICS: Mineralogy Variation

Mineralogy Variation: Linnaeite $(C0^{+2}C0^{+3}S_4)$ **Cobaltite** (CoAsS) Thin Section Size - 30cm x 20cm 3 Linnaeite 2 Cobaltite 1 Chalcopyrite 0 Wt% 2 3 5 15 16 1 4 6 7 8 9 10 11 12 13 14 17 18 19 20 21 22 Chalcopyrite Cobaltite — Linnaeite Pyrrhotite

Large Mineralogical Variation on Thin Section Sized Specimens Linnaeite Range: 1.4 % to 2.8 % Factor of 2 Variation

Micro XRF AMICS: Elemental Variation

Elemental Variation: Thin Section Size - 30cm x 20cm

Linnaeite $(Co^{+2}Co^{+3}{}_2S_4)$ Cobaltite (CoAsS)

Large Elemental Variation on Thin Section Sized Specimens Co Concentration Range: 0.7 % to 1.5 % Factor of 2 Variation

Micro XRF Analytical Conditions

Change in Resolution and Dwell Time impact Analytical Time: Important to define what is the goal of analysis prior to Measurement

Variable Resolution

Modal Mineralogy: How much of each mineral is present.

Elemental Assay: How much of each element is present.

Elemental Distribution: How is the element of interest (EOI) distributed in each mineral? E.g. Co in Linnaeite vs Cobaltite.

Mineral Association: Identify how the minerals are associated with eachother, e.g. Cobaltite and Linnaeite and Pyrrhotite etc.

Grain Shape Factor: The shape of the grain, i.e. euhedral, elongated.

Mineral Density Distribution: Classify densities of minerals. Identify how the minerals are distributed among the densities.

Grade Recovery Curves: What % of minerals of interest (MOI) or element of interest (EOI) is recovered at what grade?

Geometallurgy: Traceability Workflow

Integrated approach to improve value chain and responsible sourcing

Q. Dehaine, S. Michaux, J. Pokki, M. Kivinen and A.R. Butcher, *Battery minerals from Finland: Improving the supply chain for the EU battery industry using a geometallurgical approach*, European Geologist 49 (*In Press*).

Multi-scale Characterisation Workflow

Butcher AR (2020) Upscaling of 2D mineralogical information to 3D volumes for geoscience applications using a multi-scale, multimodal and multi-dimensional approach. *EMAS 2019*, *Conference Proceedings Volume, Trondheim*, 19-23 May 2019.

Nick Cook, President Mawson Resources

Summary and Conclusions: Micro-XRF

- Able to perform large area maps on a variety of samples:
 - Including Cut Rock Samples, Drill Core, Briquettes, Polished Sections
- Sample Preparation is Minimal for Micro-XRF
 - No carbon-coating
 - No polishing
 - Plane Parallel Surface only required
- Able to detect and resolve minor and trace elements
- Identification of high energy X-Ray lines

Summary and Conclusions Mineralogy and Micro-Metallurgy

- Ability to measure cut half drill core without further sample preparation
- Tens of centimetres-scale sample analysed at Tens of micronscale resolution
- > Areas of interest at higher resolutions
- Elemental and Mineralogical information on same area
- Maps of elements and mineral distributions
- Determine textural and geometallurgical information using AMICS Automated Mineralogy Software

Extra InformationWebinars Historic and Current

Webinars

www.bruker.com/events/webinars.html

Filter: EDS, WDS, EBSD, Micro-XRF on SEM

https://www.gtk.fi/

https://www.mawsonresources.com/

https://www.batcircle.fi/

More Information

For more information, please contact us:

Bruker Nano GmbH

info.bna@bruker.com

Or

Andrew.Menzies@bruker.com

Alan.Butcher@gtk.fi

Questions and Answers

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Acknowledgements

Tagle, R. Buegler, M. Reinhardt, F.

Dehaine, Q. Cook, N. Kuva, J. Sayab, M. Sorjonen-Ward, P. Raič, S. Molnar, F. Michaux, S.

Botha, P. Rollinson, G. Sardisco, L. Jones, S.

Lundström, M.

Innovation with Integrity