Art & Conservation Series – Part IV

Art & Conservation Series – Part IV Questions and Answers

If you have questions during this webinar,
 please type your questions, thoughts, or comments in the Q&A
 box and press Send.

• We ask for your understanding if we do not have time to discuss all comments and questions within the session.

• Any unanswered questions or comments will be answered and discussed by e-mail or in another Webex session.

Art & Conservation Series – Part IV Speakers

Dr. Henning Schröder Product Manager Micro-XRF Bruker Nano GmbH

Michele Gironda Market Segment Manager Art & Conservation Bruker Nano GmbH

Dr. Roald A. Tagle Berdan Senior Application Scientist Micro-XRF

Bruker Nano GmbH

Art & Conservation Series – Part IV Overview

- Introduction
- Features of ESPRIT Reveal
- XRF Data Processing with ESPRIT Reveal
 - 1. Oil painting: Venice
 - 2. Ceramic: Glaze Pottery
 - 3. Coin: Roman Denarius
- Live Demonstration
- Summary
- Questions and Answers

Micro-XRF in Art Introduction

Trace element sensitive

Information from depth in the sample

No sample preparation

- XRF is an element specific technique as each element absorbs and emits fluorescence at its individual energy
- The element concentration can be determined from this data
- An XRF scanner records the fluorescence on multiple points to determine the element distribution
- X-rays can penetrate deeper into matter than visible light allowing identification of hidden paintings or faded colors

Micro-XRF in Art XRF and Art – a Hand in Hand Partnership

- XRF has proven to be a core analytical technique in Cultural Heritage studies
- XRF provides key information on objects: reliable, fast, and non-invasive
- But application needs are not always the same. They differ in crucial ways with respect to the what, the where, and the how.
- Bruker offers several instruments for one analytical principle

Micro-XRF in Art Our Product Portfolio for Art and Conservation

• Bruker offers the perfect instrument for your specific needs

• **XRF-spectra** show the fluorescence as a function of detector channel or energy

Introduction

X-Ray Fluorescence Data

- Each element can have several peaks
- The peak position is characteristic for each element
- The intensity can be related to the concentration of the element
- A correct reading of a spectra gives a very solid information about the presence of a given set of elements with the possibility to determine the quantity of that specific element

Tutankhamun's iron dagger and its gold sheath

X-Ray Fluorescence Data From Point to Area Measurements

X-Ray Fluorescence Data a Universe of Data

The latest technology developments and the flexibility in the design available in our portfolio of instruments give access to a universe of data depicting the magic link between chemistry and art

X-Ray Fluorescence Data From Point to Area Measurement

This generates an extremely high degree of complexity when it comes to move **from data** to **information**

It is important to:

- interrogate
- sort
- analyze the data set

with a fast and reliable tool about aspects that are under investigation.

Mining into data becomes a necessity and it is in this activity Bruker is investing important engineering efforts to complete its instruments designed for art studies.

ESPRIT Reveal What is ESPRIT Reveal?

- XRF data analysis is a core competence of the Bruker Nano GmbH
- First ESPRIT version published in 2003
- ESPRIT Reveal is designed for Art & Conservation
- Focus: Analysis of XRF spectra and XRF hypermaps
- Import XRF data recorded with ELIO, CRONO, M4 TORNADO or M6 JETSTREAM
- Export: report, data file, Excel, image
- Easy installation, offline use only

ESPRIT Reveal Import Data Structure

Spectra can be exported from the ELIO or CRONO software as simple text, image, or spt-, mca-, spx-file

Hypermap (or map) files contain a spectrum for each point

ESPRIT Reveal The Spectrum Workspace

- <u>easy manual and automatic peak</u> <u>identification</u>
- automatically optimized ROI setting for selected elements
- compare spectra
- background subtraction and deconvolution / peak fitting
- spectra quantification with selectable and customizable evaluation methods

- <u>easy manual and automatic peak</u> <u>identification</u>
- automatically optimized ROI setting for selected elements
- compare spectra
- background subtraction and deconvolution / peak fitting
- spectra quantification with selectable and customizable evaluation methods

Processing of spectra

- easy manual and automatic peak identification
- automatically optimized ROI setting for selected elements

cps/eV

80

70

60

50

40

30

20

10

0

7

Ni-Ka

8

- compare spectra
- background subtraction and deconvolution / peak fitting
- spectra quantification with selectable and customizable evaluation methods

Finder

F1 F2 F3 F4 F5 F6 F7 F8

Ce. Pr. Nd Pm Sm Eu. Gd. Th

Table of elements

н

Li Be

Na Mo

Fr Ra Ac

BRUKE

- easy manual and automatic peak identification
- automatically optimized ROI setting for selected elements
- compare spectra
- background subtraction and deconvolution / peak fitting
- spectra quantification with selectable and customizable evaluation methods

- easy manual and automatic peak identification
- automatically optimized ROI setting for selected elements
- <u>compare spectra</u>
- background subtraction and deconvolution / peak fitting
- spectra quantification with selectable and customizable evaluation methods

- easy manual and automatic peak identification
- automatically optimized ROI setting for selected elements
- compare spectra
- <u>background subtraction and</u> <u>deconvolution / peak fitting</u>
- spectra quantification with selectable and customizable evaluation methods

BRUKER

- easy manual and automatic peak identification
- automatically optimized ROI setting for selected elements
- compare spectra
- background subtraction and deconvolution / peak fitting
- <u>spectra quantification with selectable and</u> <u>customizable evaluation methods</u>

ESPRIT Reveal What is a Hypermap?

Hypermaps contain a spectrum for each point on the sample

ESPRIT Reveal The Mapping Workspace

Processing of hypermaps

- <u>visualization and overlay of sample images</u> and hypermaps for multi-element display
- cut and extract object spectra
- maximum pixel analysis
- background subtraction and deconvolution

BRUKER

Processing of hypermaps

- visualization and overlay of sample images and hypermaps for multi-element display
- <u>cut and extract object spectra</u>
- maximum pixel analysis
- background subtraction and deconvolution

Processing of hypermaps

- visualization and overlay of sample images and hypermaps for multi-element display
- cut and extract object spectra
- <u>maximum pixel analysis</u>
- background subtraction and deconvolution

Processing of hypermaps

- visualization and overlay of sample images and hypermaps for multi-element display
- cut and extract object spectra
- maximum pixel analysis
- background subtraction and deconvolution

without deconvolution

with deconvolution

24.09.2020

XRF Data Processing with ESPRIT Reveal Oil Painting

- Nice combination of elements (modern pigments)
- Depicting the grand canal, Venice

Visual image

XRF Data Processing with ESPRIT Reveal Oil Painting

24.09.2020

XRF Data Processing with ESPRIT Reveal Oil Painting

- Painting image
 reconstruction
- Elements display only

24.09.2020

XRF Data Processing with ESPRIT Reveal Oil Painting

- Glaze pottery
- Safavid Dynasty (1501 AD to 1722 AD), Iran
- XRF data provided with the curtesy of the Archaeology department, Peking University, China

- Roman denarius (coin) depicting Roman emperor Severus Alexander (208 – 235)
- Matching production time via composition

Source: https://en.wikipedia.org/wiki/Denarius

• quantification with ESPRIT Reveal: ~ 90% Ag

		▶ Results	[Mass-%(norm.)] → Sort: Value						
✓ XRF	1	Ag 93,24	Cu 5,66	Pb 0,58	Au 0,25	Ni 0,17	As 0,04	Fe 0,02	Bi 0,03
✓ XRF	2	Ag 90,32	Cu 8,63	Pb 0,57	Au 0,25	Ni 0,16	As 0,05	Fe 0,01	Bi 0,01
✓ XRF	3	Ag 93,71	Cu 5,21	Pb 0,55	Au 0,25	Ni 0,18	As 0,05	Fe 0,02	Bi 0,01
✓ XRF	4	Ag 88,32	Cu 10,58	Pb 0,53	Au 0,29	Ni 0,19	As 0,05	Fe 0,04	Bi 0,01
✓ XRF	5	Ag 92,87	Cu 6,03	Pb 0,53	Au 0,30	Ni 0,19	As 0,04	Fe 0,03	Bi 0,02
✓ XRF	6	Ag 91,88	Cu 7,00	Pb 0,54	Au 0,29	Ni 0,18	As 0,05	Fe 0,03	Bi 0,02

Fineness of early Roman imperial silver coins

- quantification with ESPRIT Reveal: ~ 90% Ag
- mismatch in Ag content and historic background

- The composition is very different between the patina on the surface and the core
- Composition of the core is in line with the expected Ag-content of roman coins from this time
- For historic alloy is important to consider effects of patina when quantifying

		Results [Mass-%(norm.)] > Sort: Value								
✓ XRF	Core.spx	Cu 62.19	Ag 37.10	Pb 0.38	Au 0.12	As 0.10	Fe 0.10	Bi 0.00	Rh	
✓ XRF	Patina.spx	Cu 5.41	Ag 93.39	Pb 0.79	Au 0.31	As 0.05	Fe 0.03	Bi 0.02	Rh	

Fineness of early Roman imperial silver coins

- quantification with ESPRIT Reveal: ~ 37% Ag •
- Ag content matches historic background •

Julio-Claudians

24.09.2020

XRF Data Processing with ESPRIT Reveal

Development of a Standard Supported Fundamental Parameter Quantification

A) Setting up an instrument specific calibration

- wide range of elements
- 60 second for following element alloys
- fixed collimator size
- precisely focused

B) Refining with certified standards

- Standard supported fundamental parameter (FP) quantification with ELIO
- certified alloys

XRF Data Processing with ESPRIT Reveal Live Demonstration

live demonstration

by

Dr. Roald A. Tagle Berdan

Summary

BRUKER has very seriously decided to serve the Art & Conservation market designing and developing instruments. The wide portfolio perfectly allows to size a measurement campaign on very specific customer needs.

Data evaluation tools are key to complete analytical instruments and ESPRIT Reveal is a perfect solution as it is:

- Easy to install, operate and learn
- Fast, reliable and perfectly optimized to work in combination to our instruments (ELIO and CRONO in particular)
- Complete in covering common advanced analytical needs for either qualitative and quantitative analysis

Art & Conservation Series – Part IV Questions and Answers

If you have questions during this webinar,
 please type your questions, thoughts, or comments in the Q&A
 box and press Send.

• We ask for your understanding if we do not have time to discuss all comments and questions within the session.

• Any unanswered questions or comments will be answered and discussed by e-mail or in another Webex session.

Art & Conservation Webinar Series Overview

Part I – May 6 th	New Horizons of micro-XRF
Part II – May 27 th	Flexible and portable-XRF mapping solutions: Bruker's ELIO and CRONO spectrometers
Part III – June 16 th	TRACER: the benchmark in handheld-XRF for cultural heritage
Part IV – September 24 th	XRF Data Processing in Art and Conservation with ESPRIT Reveal

available on https://www.bruker.com/events/webinars.html

For more information please contact us <u>Michele.Gironda@bruker.com</u>

