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What is micro-XRF?
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C><)
Qualitative and quantitative X-ray fluorescence analysis SRQEER
Counting atoms

= XRF is widely known for quantitative analysis. Why? Because it works so straightforwardly.
= An atom in an X-ray beam will produce element specific fluorescence radiation.
= Two atoms of the same type will produce twice as much fluorescence radiation.
= Many different atoms in the X-ray beam will all produce their characteristic fluorescence radiation.
= Detecting the radiation with wavelength- or energy-dispersive detectors enables qualitative analysis.

= Counting the number of incoming photons allows to count the atoms = quantitative analysis.
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C><)
Quantitative X-ray fluorescence analysis BRUKER
From atoms to wt.%

= With additional information, it is possible to convert this number of “atoms in an X-ray beam” to meaningful
units:

= To get the mass coverage, the size of the irradiated area.
= To get a layer thickness, the density of a material.
= To get atomic concentrations, the interaction volume (spot size and penetration depth).

= To get to mass concentration (wt.%), the weight of the atoms.

h K Sn Ca

HI ‘ 1 |
1.0 115 | 2:{] o 2.5 | 3.ID 3.5 4.ID
keV
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Quantitative X-ray fluorescence analysis
With standards or without

There are two distinct approaches to quantitative XRF:

a—

= Element concentrations can be deduced by comparison of the sample spectrum with spectra of sufficiently
similar standard samples with known compositions.

= All physical effects in XRF are reasonably well-understood nowadays and their probabilities are tabulated.
Thus, a quantification based on these fundamental parameters and a lot of math (FP quantification) can be
perﬁ@rme@d_ Si Mn Fe Ni  Cu  Zn Ga Rh Pb Bi

95 76.31  0.01 1.08 0.18 0.01  6.95 0.08 0.00 0.00 0.00 0.00
72.17 | « 1.16 0.27 0.01 | 6.77 | 0.07 0.00  0.00 0.00 0.01 50 80 100
0.02 | 7.38 | 0.08 0.00  0.00 0.00 0.00 lion / wi

30 | 0.08 0.00 0.00 0.01 0.01
0 0.00 0.00 0.01 0.00

There are numerous hybrid approaches with (_ji_fferjerr-:wt ééhtributions of either form of quantification:
= FP-supported standard-based quantification

= Standard-supported FP quantification
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BACK TO THE ROOTS - PART | an
From XRF to micro-XRF Lo
Why the need?

= Quantitative XRF is very sensitive, precise, and accurate.
= Large EDXRF and WDXRF instrument are part of ISO and ASTM workflows for routine QC analysis.

= These so-called bulk-XRF instruments work with samples prepared to ideal conditions (flat, homogenous,
and infinitely thick) and often even diluted (Li,B,0, or wax) to reduce inter-element effects and optimize
detection limits.

= For inhomogeneous samples, bulk-XRF analysis is prone to fail (unless it has been calibrated with
reference samples that have the exact same sort of inhomogeneity).

= For inhomogeneous samples, a method is needed that:
= Can resolve the inhomogeneity in the first place.

= Can quantify small parts of the sample, where it can be considered “locally homogeneous”.

| Innovation with Integrity | 9
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From XRF to micro-XRF BRURER

Micro-XRF
with lens

Conventional
XRF

Small-spot XRF
with collimator

Compositional variations
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<)
From XRF to micro-XRF BRURER

= Conventional X-ray fluorescence analysis (XRF) is an analytical tool for qualitative and quantitative
material analysis. It performs ideally in a standardized workflow.

= XRF tells you which elements are in the sample and how much of each one.

= Usually a sample needs “preparation’, including _cps/ev
homogenization and/or dilution for matrix reduction. 3503 Element AN "M C:
3001 [wt.%]
250° cr 24 18.30
200; Fe 20 F71.70
] Ni 28 9.48
1507 Mo 42 0.53
100
_ _ 1 Cr Fe Ni Mo
Information is lost! 50
The compositional variations in a sample
may be a crucial property of the material

6 8 10 12 14 16 i8s 20
keV
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(<)
Micro-XRF SERESR

= Micro-XRF is XRF with a small spot (howadays typically < 20 um).
- Micro-XRF reveals where elements are.
- Micro-XRF is ideal for non-homogeneous samples.

= [t usually requires minimal or no sample preparation.

= Quantitative micro-XRF is feasible for sufficiently homogeneous areas
of the sample, which can be even below 100 um in diameter.

= The measurement conditions are very flexible in order to address
different analytical tasks or requirements posed by the sample.

© 2022 Bruker | Innovation with Integrity | 12
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Micro-XRF

A comparison to similar methods

Analyzed
Volume

Detectable
Elements

Energy range

Concentration
Range

Quantification

Data collection

Sample
Preparation

Sample
Stress

© 2022 Bruker

@: few microns
Information depth: microns
(depending primarily on electron energy)

Atomic number Z > 4 (beryllium)
up to 20 keV (K= L — M = lines)
Down to 1000 ppm
Standardless and standard-based

Simultaneous

Sample needs to be electrically conductive
(commonly carbon-coated);
polishing required

Heating due to absorbed electrons

@: few microns
Information depth: microns
(depending primarily on electron energy)

Atomic number Z > 4 (beryllium)
70eV - 3.6 keV (L = M - lines)
Down to 100 ppm
Standard-based

Sequential

Sample needs to be electrically conductive
(commonly carbon-coated); polishing required

Heating due to absorbed electrons

@: 15-30 microns

Information depth: microns to
millimeters

(depending on analyzed element and

matrix)

Atomic number Z > 6 (carbon)
up to 40 keV (K = L =M - lines)
Downto T ppm
Standardless and standard-based

Simultaneous

Electrical conductivity not required,

samples don't need to be polished

Minimal

| Innovation with Integrity |
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Micro-XRF

Back to the roots — part |

1. X-ray tube

2. Filters

3. Optics
= Spot size
Atmosphere
Sample

4.

5.

6. Sample stage
/. Detectors

8.

Data mining

© 2022 Bruker

4. Atmosphere

/. Detectors

3. Optics

5. Sample

A
v

6. Sample stage
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1. X-ray tubes
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X-ray tubes
Working principle

<)
BRUOKER
(>

M\HY The filament is heated by electrical current, emitting electrons.

The HV between filament and anode accelerates the electrons.

accelerated electrons

filament

When hitting the anode, the electrons are strongly decelerated.

Their kinetic energy is thereby transformed into the continuous
| e bremsstrahlung (in addition to characteristic X-ray fluorescence).

Rh‘l_ Rh'KO

= Only T % of the tube power is transformed to X-rays, the rest is heat.

= The local heat load in the area where the electrons hit the anode is the limiting

factor for the X-ray tube’s power.
Rh-KB

= The high voltage times the electron current (10 kV - 100 pA = 1 W) and the
area into which the electrons are focused are the crucial parameters. (

© 2022 Bruker | Innovation with Integrity | 16
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X-ray tubes
Different types

= There are different types of X-ray tubes for small-spot and micro-XRF:

= Fine focus tubes are used for collimator systems. The accelerated electrons are focused into an area of
= 100 um diameter. This relatively large area allows to operate an X-ray tube at moderate power (~ 50 W).

= A polycapillary lens is a beam guide, much more than a real lens. All X-rays that do not come from the
focus area are just not transmitted. So, when a polycapillary lens is used, the anode X-ray spot needs to be
small. Therefore, micro-focus tubes are used, where the electrons are focused into an area < 50 um and the
maximum power is lower, i.e. around 30 W. electronbeam

= Another design parameter is the anode angle: I
~

= When the angle is small, the spot appears to be small
from the perspective of the tube window.

;\//\/\/\/\ tube
AYaVvs window

= When the angle is steep, more of the low-energy
radiation gets out of the anode (and tube window).

radiation shielding

© 2022 Bruker | Innovation with Integrity | 17
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X-ray tubes =
The anode angle

electron beam
Top view

The direction from
where the electrons
come

Side view

(from the window)
The direction to where
the photons go

R%/\\f/\/‘ tube
QA window

The lens “sees” a small spot even though
it's true area is large in one direction
- larger areas allow for higher tube power

© 2022 Bruker | Innovation with Integrity | 18
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X-ray tubes
Effect of the acceleration high voltage

= The HV defines the _cps/eV
high-energy cut-off.

—scatter_ 5_kV
—scatter_10_kv
——scatter_15_kv

scatter 20 kv

scatter_25_kV
— scatter_30_kV
——scatter_35_kv
——scatter_40_kV
—scatter_45_kvV
——scatter_50_kV

= Higher HV creates higherwt
X-ray intensity in the

3_
whole spectral range.

= The low-energy X-rays  ¢-
are attenuated by the '
tube window. 4.

= The low-energy _
background (< 2 keV)is 27
caused by Compton

scattering of high-energy 5 10 1s 20 25 30 35 40 45 50
photons in the detector. keV

© 2022 Bruker | Innovation with Integrity | 19
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B(I:l?lgE?R
X-ray tubes (<O
Anode materials

= The anode material used in the X-ray tube to generate the X-rays may vary from instrument to instrument.

= Basically, the elements in the tube can be divided into K-line tubes (Cr, Cu, Mo, Rh, Pd, or Ag) or L-line tubes,
for which W is a well-known example.

= Among all materials Rh is the most universal one, as its Compton- or Rayleigh-scattered peaks overlap only

with Cl (the L lines) and Tc and Ru (the K lines). " e ::
Al 51 P 5 EB Ar
= The other anode materials are much more application-specific. For example: . Co Ni |Gl Zn Ga Ge As Se Br Kr
Fu Fh Pd &g Cd In Sn Sb Te 1 Xe
= Cris fantastic for elements between Ti and K. = Os Ir Pt AuHg Tl Pb Bi Po At Rn
d PmSm Eu Gd Th Oy Ho Er Tm ¥ Lu
= Agis fantastic to visualize traces of Cl in samples like fingerprints J Np PuAmCmBk Cf Es Fm Md No Lr

or sea water interactions with concrete. . .

= W with its high bremsstrahlung and “clean” high energy range is ideal for the detection of traces of
elements between Rh and Eu.

© 2022 Bruker | Innovation with Integrity | 20
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BMR
X-ray tubes (<O
Anode materials

» cps/eV

354

mmz SDD_Ag Anode_| _30KV_200pA_2mbar
60 mm2 SDD_RhAnode_NIST620_30kV_200uA_2mbar
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2. Filters
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Filters
Where and why?

= (Primary) filters are located right at the exit of the tube.

= They affect the low-energy onset of the spectrum.

= They can be used to:

= Avoid diffraction.

= QOptimize signal-to-noise ratio for selected elements.

cps/eV

351

1 Cu
307
25%

204

15_: cr Fi

10%
ol L.‘
6

4 5

i

I T e e e e e e e e e L

7 38
keV

9

without filter
with 100 um Al
foil filter

10 11

12

C><)
BRUKER

Filter

Filter wheel

1.0 1.5 2.0 2.5 3.0 3.5 4.0
keV

| Innovation with Integrity | 23



BACK TO THE ROOTS - PART |

Filters
Why so many?

<)
BRUOKER
(>

= Filters cut the low energies from the excitation spectrum.

Therefore, some flexibility is needed.
- Many filters to reflect the versatility of
the method.

Stacked foils are used to:

= Avoid visible absorption edges of the

filter elements in the scattered spectra.

= Avoid fluorescence signal of the filter
elements as blind values.

© 2022 Bruker

161

14
12

10-

ONAG\Q

The instrument’s sensitivity for light elements is thereby impeded.

|deally the filter to optimize for a few elements does not cut away more excitation radiation than needed.

_cps/eV

— Al 100 pm Ti 50 pm Cu 25 um

I | Al 630 pm

—Al100 pm Ti 25 pm
Al 100 um

—Al'12.5 pm

— no filter

30
keV

| Innovation with Integrity |
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and attainable spatial resolution
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X-ray optics
Collimators and polycapillary lenses

= Apart from the very different spot size, there is one major difference between a polycapillary and a collimator:

Their transmission properties!

A collimator is just a hole. It limits the area (and the intensity), but it does not change the spectrum.

The polycapillary is made of many bundles of hollow glass tubes, where the X-rays are guided using external

total reflection.
0.12

= Low-energy X-rays are easily absorbed by the glass. 010

= High-energy X-rays need a very shallow angle* to be reflected. 0.08

0.06

transmission

= Qverall, only the mid-energy X-rays are transmitted effectively. Sos

= The overall intensity with a @ 20 um spot is similar to that of a 002 |,
@ 3 mm collimator. 0,00 ces® e
0 5 10 15 20 25 30 35 40
= High-energy excitation works much better with a collimator. photon energy / keV

*it's < 0.1° for 20 keV photons

| Innovation with Integrity | 26
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X-ray optics
High-energy excitation

cps/eV
7_

61 Rh tube with collimator (@ 1 mm)

normalized to Rh-Ka
(scaling factor: ~ 7)

3-
2
1
o]
5 10 15 20 25 30 35 40
keV
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Co<)
Spatial resolution BRGBKR

= The spatial resolution in micro-XRF depends on the
spot size of the polycapillary lens.

= Therefore, reducing the polycapillary spot size seems
to be a straight-forward way to further increase the
spatial resolution of the method.

= |s this “logical” step fully valid? Is there a limit for the
attainable spatial resolution, as there is for SEM-EDX?

| Innovation with Integrity | 28
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. : BRGRER
Spatial resolution »e
... and its effects

= |t is possible to attain smaller spot sizes, but it comes at a price: intensity is sacrificed, working distance is
lost, and the X-ray beam divergence is increased.

= What is the gain in spatial resolution?

Spatial
Spot size Beam Working Beam .
intensity, distance divergence R@SO'Uthﬂ

Gain?

Longer
measurement non-flat samples,

Problems with Problems with

time non-flat samples more Bragg peaks

© 2022 Bruker | Innovation with Integrity | 29
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Spatial resolution
Experimental findings

= Micro-XRF is not exclusively probing the surface!

/4

© 2022 Bruker

= There alwaysis a 3D
component to be
considered.

Even if the excited surface

area is getting smaller, the ;?A

probed depth doesn't
change.

= Depending on the matrix
and the probed element,
the depth may define the
probing volume.

25 um thickness

Thin section of ~
. © EEECIRA T Q o

‘O
\ﬂ

| Innovation with Integrity | 30
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Spatial resolution
... and information depth

= Ultimately, the maximum achievable resolution
depends on the matrix of the sample and the

information depth of the elements to be resolved.

= |n arock sample, the maximum achievable
resolution should be =40 um.

= |n a metal sample, the maximum achievable
resolution should be = 10 um.

= A smaller excitation spot will not necessarily
lead to increased resolution.

= The drawbacks, however, will be noticeable:

Longer Problems with Problems with
measurement non-flat samples non-flat samples,
time more Bragg peaks

© 2022 Bruker

Information depths of selected element fluorescence lines in different matrices

Minsteel Minglassorstone [@in plastics or wood

1.8cm

1cm

1 mm

100 um
10 um
1pum
100 nm
Si-K Ti-K Au-L Zr-K Sn-K
1.74 keV 4.5 keV 9.7 keV 15.7 keV 25.3 keV
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4. Atmosphere
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Atmosphere
An overview

= The atmosphere surrounding the sample is an important measurement parameter, especially when
light elements are of interest.

= Of utmost importance for (map) analysis will be a stable pressure. Otherwise, any fluctuation in pressure will

manifest in varying measured element sensitivities!
transmission of X-rays -
20 mm in different atmospheres

100 —
80
. . . . X
Air Arr Arr Air He =
Element Energy n keV 1000 mbar 200 mbar 20 mbar 2 mbar 800 mbar 2 60
C 03 0.0 11 80 98 43 g
N 04 0.4 33 90 09 71 § 40 ——air 1013 mbar
0 0.5 0.0 0 54 95 &7 b= ~—air 200 mbar
F 0.7 0.0 1 65 96 94 —4ir20 mbar
Na 1.0 0.1 23 86 09 98 20 ——2ir2 mbar
Ca 3.7 80 96 100 100 100
Fe 6.4 %6 %9 100 100 100 0 i
calculated for 20 mm distance betwenn sample and detector 0.1 1 10

Air=78.115 % N2; 20.95 % 02; 0.934 % Ar photon energy / keV
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5. Samples
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S an
amples (>

Anything from 7 kg of massive
samples to powders and liquids
can be measured with micro-XRF.

[l ca

Strawberry

| Innovation with Integrity | 35
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6. Sample stage
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The stage
Fast and precise

= The sample stage needs to fulfill (at least) three
conditions:

= |t should be able to move large samples
(which may get heavy).
= |t must be fast
(to allow for short measurement times).
= |t needs to be precise

(at least more precise than the spot size).

= Reproducible positioning is needed for
multi-frame-measurements!

C><)
BRUKER

10, OONCED 54660, .70, 80, %0, 100 110, 120 10 140 150 um (@)

il L i

Position T Position 2

| Innovation with Integrity | 37
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The stage

Reproducible positioning

One cycle

120+
100
80
607
40/

204

0_'
0

Length=14.7 ym 7 25.1 ym Mo-KA: 77

(14.6 + 0.3%) um

10

20
‘Distance / um

BRUKER
10 cycl
C C eS Mapping parameters
Width: 151 pixel
603 pm
Height: 85 pixel
340 pm
Pixel Size: 4 pum
Total number of pixel: 12835 pixel
Acquisition parameters
Frame count: 1/1
Pixel time: 5 ms/pixel
Mo Measure_time: 52.5
Owverall time: 3:13 min
Lo e Stage speed: 300 pm/s
1204
1 Tube parameter
1005 High voltage: 50 kv
] Anocde current: 599 pA
804 Filter: Empty
605 Optic: Lens
] Chamber at: Air 1050.7 mbar
405 Anode: Rh
20: Detector parameters
05 Selected detectors: 1
0 10 2|0 Max. pulse throughput: 130000 cps

'Distance / pm

Length=15.9 pm 8 26.3 pm Mo-KA: 85

* For each set of data, different users
derived values with 0.3 pm deviation.

(15.9 + 0.3%) um
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/. Detectors
and “clean spectra”
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Detectors
... and their entrance window

Conventional window:
Be window with thickness between

8.5umand 12 um

Light element window:
Thin polymer foil supported by

a silicon grid Si

sensitivity

© o o o 0o o o o o o =
o =2 N W o~ OO NN o v o

Detector sensitivity for different window types

LE window

Be (8.5 um) window

(@)
Y

1

energy / keV

10

| Innovation with Integrity |
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Detectors
... and their entrance window

= The ability to see the carbon Ka fluorescence is to be considered a
benchmark for the sensitivity of the instrument.

= The M4 TORNADO PLUS is not well-suited for quantitatively analyzing
carbon! Especially not when scanning.

= |n this spectral region the sensitivity is low, line overlap and inter-
element effects are very pronounced and the information depth is
very different from the other elements.

= A detector that can see the X-ray fluorescence of carbon is, of course,
more sensitive for all light elements than a conventional detector.

= |t's twice as sensitive for Mg-Ka (at 1.25 keV).

= For higher energies, the Si support grid still acts as a filter.

cps/eV

o - N W £ [} =} ~ (]
PRI T S R S S AT S A A R S A R S A SR AU IS A |

NIST 620
—CaF2

Li2CO3
— Diamond

Na Mg

fi!-'!:L!

0.80

keV

1.00 1.20

— NIST 620 M4

NIST 620 M4T+
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ngg;n
Detectors (>
... and clean spectra

cps/eV

— scatter spectrum

- 30

keV
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8. Data mining possibilities
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Data mining
The HyperMap datacube

= Position tagged spectroscopy 'uulechs
is state of the art. o |

= We call our dataset

100 200 300 400 500 600 700 800

"HyperMap" . _;hannel
.. x 1E3
r. 12{ 1
R o |
. . [ 1] 08 ® .
= For each pixel in a map, the == 0.6 e ol < Fe
complete spectral data is BE: 3i§.JLLL i
“ 100 200 300 ‘::Egnnelmo 600 700 800
saved. — |
. | x 1E3 cps il
= The data are then available =
. . 0.8
for offline analysis — even os'ere B Fe
0.4
ears later. H rF °-2J l L
y =.....= 94 100 200 300 400 500 600 700 B(;(i
F0 o e e ot channel )

50 pm

sse | I I I
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- BRORER
Data mining e

= With the complete spectral data available, multiple ways of data display and evaluation are made possible.

. X 1E3 cps/eV

e 1,27 —Map

" 1.0] —circle

» ] —rectangle
o 0.8; polygon
©  0.6- —line

« 0.4

i ] S

ok 1 P Fe Ni

Campo del Cielo

© 2022 Bruker | Innovation with Integrity | 45
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Data mining
FP quantification

CONFIGURATION - SPECTRUM ELEMENTS X
Elements

v Use spectrum elements
H | Use list elements He

Li Be

B C N O F Ne
Al Si P 5 Cl Ar

Search additional elements

K CaSc Ti ¥V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr ¥ Zr Nb Mo Tc Ru [Rh|Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl :Pb:Bi Po At Rn

Fr Ra Ac

Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu
Th Pa U Np PuAmCm Bk Cf Es Fm Md No Lr

Double click an element to cpen element editar Clear all
Special properties of selected elements
Fact.
1.00 Compound
cu 0.92 S.tcichicm. elements
Fix concentra

Zn 0.91

Rh 1.00

Pb 1.37

Difference elemant

C><)
BRUKER

Global options
Background cycles
Default
® Manual |120

Description

Load... Save...

Minimum concentration
0.00 Ya

| NNLS

OK Cancel

= Type-calibrated FP
Quantification.

Grade-IARM [ - | [ - |
CDA314-72B T T T 90.1 0.0 T T T 0.0 0.0 2.0 0.0 0.0 T T T 7.8 T
CDA360-73B 0.0010 0.0 T 61.5 0.2 0.0 T T 0.1 0.0 2.7 0.0] 0.2 T T T 35.3 T
CDA485-76B 0.0050 0.0 T 60.5 0.1 0.0 T T 0.0 0.0 1.9 T 0.7 T T T 36.7| T
CDA510-77B 0.0010 T T 95.2 0.0 0.0 T T 0.0] 0.1 0.0 0.0 4.7 T T T 0.0 T
CDA544-78B 0.0020 T T 87.7| 0.0 0.0 T T 0.1 0.2 3.9 T 4.7 T T T 3.6) T
CDA623-79B 9.1900) 0.0 0.0 88.4 2.1 0.2 T T 0.1 0.0 0.0 0.0 0.0 T T T 0.0 T
CDA630-80B 10.1900 0.0 0.0 81.2] 3.3 0.5 T T 4.7 0.0 0.0 0.0 0.0 T T T 0.1 T
CDA642-81B 6.7000| T 0.0 91.2 0.0 0.0 T T 0.0 0.0 0.0 1.8 0.0 T T T 0.2 T
CDA655-82B 0.0020 T 0.0 95.3] 0.1] 1.0 T| T 0.0 0.0 0.0 3.2 0.0 T T T 0.4 T
CDA706-84B 0.0020 0.0 0.0 87.9 13 0.6) T T 10.0 0.0 0.0 0.0 0.0 T T T 0.1] T
CDA836-86C 0.0020| T T 84.6) 0.2] 0.0 T T 0.3 0.0 5.0 0.0 4.4 T T T 5.4 Tl
CDA857-87B 0.2000| 0.0 0.0 60.9 0.3] 0.0] T T T 0.0 1.6 0.0 0.8 T T T 36.1] T]
CDA932-91C 0.0020| T T 83.2] 0.0 0.0 T T 0.5 0.1 6.8 0.0 6.8 T T T| 2.6 T]
CDA937-BS9378B-1 T T T| 80.2 0.0| T T T 0.4 0.0 9.2 T 9.7, T T T| 0.0 T]
100 20 8
¢ o
| = Il ] | .
80 .‘ N 1 g
y = 1.0086x g 30 y = 1.0045x 6 y =1.0122x
70 R2=0.9943 . R?=0.9999 R?=0.9993 .
?\: 60 ' g g .
3 3 3
E 50 E 20 EJ 4 .
§ 40 § §
T T 15 T3
30
10 . 2 ‘
* s .
" 5 ".'.,D 1 ‘
° s o8
10 20 30 40 50 60 70 80 EY 100 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5

certified wt%

certified wt%

certified wt%
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Data mining
Phase analysis

= Pixels of an element distribution
map can be sorted into “phases’
of similar intensity.

)

= Sum spectra of these “phases”
allow to identify element
correlations, to find associated
traces, or to generally sum up
separate inclusions to get spectra
with better statistics.

= Additional information, such as

area ratios of the phases, may 8 o Sl tawaa
hold information valuable for e w
quality control. s~
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Data mining
Displaying complex data
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