

Micro-XRF Back to the Roots – Part I

March 23, 2022

Leaves Berlin, Germany

Garnets Zillertal, Austria

Jianianhualong Early Cretaceous theropod, China

What is micro-XRF?

Qualitative and quantitative X-ray fluorescence analysis Counting atoms

- XRF is widely known for quantitative analysis. Why? Because it works so straightforwardly.
- An atom in an X-ray beam will produce element specific fluorescence radiation.
- Two atoms of the same type will produce twice as much fluorescence radiation.
- Many different atoms in the X-ray beam will all produce their characteristic fluorescence radiation.
 - Detecting the radiation with wavelength- or energy-dispersive detectors enables qualitative analysis.
 - Counting the number of incoming photons allows to count the atoms \rightarrow quantitative analysis.

Quantitative X-ray fluorescence analysis From atoms to wt.%

- With additional information, it is possible to convert this number of "atoms in an X-ray beam" to meaningful units:
 - To get the mass coverage, the size of the irradiated area.
 - To get a layer thickness, the density of a material.
 - To get atomic concentrations, the interaction volume (spot size and penetration depth).
 - To get to mass concentration (wt.%), the weight of the atoms.

Quantitative X-ray fluorescence analysis With standards or without

There are two distinct approaches to quantitative XRF:

- Element concentrations can be deduced by comparison of the sample spectrum with spectra of sufficiently similar standard samples with known compositions.
- All physical effects in XRF are reasonably well-understood nowadays and their probabilities are tabulated.
 Thus, a quantification based on these fundamental parameters and a lot of math (FP quantification) can be

K	perfor	med	Si	Mn	Fe	Ni	Cu	Zn	Ga	Rh	Pb	Bi
1	0.95	76.31	0.01	1.08	0.18	0.01	6.95	0.08	0.00	0.00	0.00	0.00
	0.71	72.17	0.01	1.16	0.27	0.01	6.77	0.07	0.00	0.00	0.00	0.01
	1.05	76.45	0.01	1.07	0.14	0.02	7.38	0.08	0.00	0.00	0.00	0.00
	0.89	76.53	0.01	1.16	0.30	0.02	7.30	0.08	0.00	0.00	0.01	0.01
	0.93	73.84	0.01	1.07	0.10	0.01	6.58	0.07	0.00	0.00	0.01	0.00
		80.67	0.01	0.05	0.92	0.01	8.00	0.07	0.01	0.00	0.15	0.19

There are numerous hybrid approaches with different contributions of either form of quantification:

- FP-supported standard-based quantification
- Standard-supported FP quantification

From XRF to micro-XRF Why the need?

- Quantitative XRF is very sensitive, precise, and accurate.
- Large EDXRF and WDXRF instrument are part of ISO and ASTM workflows for routine QC analysis.
- These so-called bulk-XRF instruments work with samples prepared to ideal conditions (flat, homogenous, and infinitely thick) and often even diluted (Li₂B₄O₇ or wax) to reduce inter-element effects and optimize detection limits.
- For inhomogeneous samples, bulk-XRF analysis is prone to fail (unless it has been calibrated with reference samples that have the exact same sort of inhomogeneity).
- For inhomogeneous samples, a method is needed that:
 - Can resolve the inhomogeneity in the first place.
 - Can quantify small parts of the sample, where it can be considered "locally homogeneous".

From XRF to micro-XRF

Composition

Compositional variations

20

18

norm. C

[wt.%]

18.30

71.70

9.48

0.53

AN

Element

The compositional variations in a sample may be a crucial property of the material

- Conventional X-ray fluorescence analysis (XRF) is an analytical tool for qualitative and quantitative material analysis. It performs ideally in a standardized workflow.
- XRF tells you which elements are in the sample and how much of each one.

10

12

keV

14

16

8

6

Micro-XRF

Micro-XRF is XRF with a small spot (nowadays typically < 20 μm).

- \rightarrow Micro-XRF reveals where elements are.
- \rightarrow Micro-XRF is ideal for non-homogeneous samples.
- It usually requires minimal or no sample preparation.
- Quantitative micro-XRF is feasible for sufficiently homogeneous areas of the sample, which can be even below 100 µm in diameter.
- The measurement conditions are very flexible in order to address different analytical tasks or requirements posed by the sample.

Micro-XRF A comparison to similar methods

Parameter	EDS: E-beam	WDS: E-beam	Micro-XRF
	(SEM-EDS)	(SEM-WDS)	(XRF-EDS)
Analyzed Volume	Ø: few microns Information depth: microns (depending primarily on electron energy)	Ø: few microns Information depth: microns (depending primarily on electron energy)	Ø: 15-30 microns Information depth: microns to millimeters (depending on analyzed element and matrix)
Detectable Elements	Atomic number $Z \ge 4$ (beryllium)	Atomic number Z ≥ 4 (beryllium)	Atomic number Z ≥ 6 (carbon)
Energy range	up to 20 keV (K – L – M – lines)	70 eV – 3.6 keV (L – M – lines)	up to 40 keV (K – L –M – lines)
Concentration Range	Down to 1000 ppm	Down to 100 ppm	Down to 1 ppm
Quantification	Standardless and standard-based	Standard-based	Standardless and standard-based
Data collection	Simultaneous	Sequential	Simultaneous
Sample Preparation	Sample needs to be electrically conductive (commonly carbon-coated); polishing required	Sample needs to be electrically conductive (commonly carbon-coated); polishing required	Electrical conductivity not required; samples don't need to be polished
Sample Stress	Heating due to absorbed electrons	Heating due to absorbed electrons	Minimal

Micro-XRF Back to the roots – part I

- 1. X-ray tube
- 2. Filters
- 3. Optics
 - Spot size
- 4. Atmosphere
- 5. Sample
- 6. Sample stage
- 7. Detectors
- 8. Data mining

6. Sample stage

X-ray tubes Working principle

- The filament is heated by electrical current, emitting electrons.
- The HV between filament and anode accelerates the electrons.
- When hitting the anode, the electrons are strongly decelerated.
- Their kinetic energy is thereby transformed into the continuous bremsstrahlung (in addition to characteristic X-ray fluorescence).
- Only 1 ‰ of the tube power is transformed to X-rays, the rest is heat.
- The local heat load in the area where the electrons hit the anode is the limiting factor for the X-ray tube's power.
- The high voltage times the electron current (10 kV \cdot 100 μ A = 1 W) and the area into which the electrons are focused are the crucial parameters.

X-ray tubes Different types

- There are different types of X-ray tubes for small-spot and micro-XRF:
 - Fine focus tubes are used for collimator systems. The accelerated electrons are focused into an area of
 ≥ 100 µm diameter. This relatively large area allows to operate an X-ray tube at moderate power (~ 50 W).
 - A polycapillary lens is a beam guide, much more than a real lens. All X-rays that do not come from the focus area are just not transmitted. So, when a polycapillary lens is used, the anode X-ray spot needs to be small. Therefore, micro-focus tubes are used, where the electrons are focused into an area ≤ 50 µm and the maximum power is lower, i.e. around 30 W.
- Another design parameter is the **anode angle**:
 - When the angle is small, the spot appears to be small from the perspective of the tube window.
 - When the angle is steep, more of the low-energy radiation gets out of the anode (and tube window).

X-ray tubes The anode angle

X-ray tubes Effect of the acceleration high voltage

- The HV defines the high-energy cut-off.
- Higher HV creates higher
 X-ray intensity in the whole spectral range.
- The low-energy X-rays are attenuated by the tube window.
- The low-energy background (< 2 keV) is caused by Compton scattering of high-energy photons in the detector.

X-ray tubes Anode materials

- The anode material used in the X-ray tube to generate the X-rays may vary from instrument to instrument.
- Basically, the elements in the tube can be divided into K-line tubes (Cr, Cu, Mo, Rh, Pd, or Ag) or L-line tubes, for which W is a well-known example.
- Among all materials Rh is the most universal one, as its Compton- or Rayleigh-scattered peaks overlap only with Cl (the L lines) and Tc and Ru (the K lines).
 B C N O F Ne
- The other anode materials are much more application-specific. For example: v Cr Mn Fe Co Ni Cu Zn Ga
 - Cr is fantastic for elements between Ti and K.
 - Ag is fantastic to visualize traces of Cl in samples like fingerprints or sea water interactions with concrete.
 - W with its high bremsstrahlung and "clean" high energy range is ideal for the detection of traces of elements between Rh and Eu.

j	F1	F2	F3	F4	F5	F6	F7	F8			-				He
										в	С	Ν	0	F	Ne
										Al	Si	Ρ	s	Cl	Ar
xamp	ble	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Sr Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Ba La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Ra Ac	Ce	e Pr	No	l Prr	n Sr	n Eu	Go	H TŁ	Dy	/ Ho	Er	r Tn	n Yb) Lu	1
	Th	n Pa	U	Np	PL	ı An	۱Cn	n Bl	c Cf	f Es	; Frr	n Mo	d No	L	r
							_								
Dynamic lines Pd									Clea	ar a			A	uto	- -

X-ray tubes Anode materials

CI-ROI with Rh tube

... and with Ag tube

Filters Where and why?

- (Primary) filters are located right at the exit of the tube.
- They affect the low-energy onset of the spectrum.
- They can be used to:
 - Avoid diffraction.
 - Optimize signal-to-noise ratio for selected elements.

Filters Why so many?

- Filters cut the low energies from the excitation spectrum.
- The instrument's sensitivity for light elements is thereby impeded.
- Ideally the filter to optimize for a few elements does not cut away more excitation radiation than needed.
- Therefore, some flexibility is needed.
 → Many filters to reflect the versatility of the method.
- Stacked foils are used to:
 - Avoid visible absorption edges of the filter elements in the scattered spectra.
 - Avoid fluorescence signal of the filter elements as blind values.

3. X-ray optics and attainable spatial resolution

X-ray optics Collimators and polycapillary lenses

 Apart from the very different spot size, there is one major difference between a polycapillary and a collimator: Their transmission properties!

- A collimator is just a hole. It limits the area (and the intensity), but it does not change the spectrum.
- The polycapillary is made of many bundles of hollow glass tubes, where the X-rays are guided using external total reflection.
 - Low-energy X-rays are easily absorbed by the glass.
 - High-energy X-rays need a very shallow angle* to be reflected.
 - Overall, only the mid-energy X-rays are transmitted effectively.
- The overall intensity with a Ø 20 µm spot is similar to that of a Ø 3 mm collimator.
- High-energy excitation works much better with a collimator.

* it's < 0.1° for 20 keV photons

X-ray optics High-energy excitation

BACK TO THE ROOTS - PART I Spatial resolution

- The spatial resolution in micro-XRF depends on the spot size of the polycapillary lens.
- Therefore, reducing the polycapillary spot size seems to be a straight-forward way to further increase the spatial resolution of the method.
- Is this "logical" step fully valid? Is there a limit for the attainable spatial resolution, as there is for SEM-EDX?

Spatial resolution ... and its effects

- It is possible to attain smaller spot sizes, but it comes at a price: intensity is sacrificed, working distance is lost, and the X-ray beam divergence is increased.
- What is the gain in spatial resolution?

Innovation with Integrity | 30

BACK TO THE ROOTS - PART I

Spatial resolution Experimental findings

Micro-XRF is not exclusively probing the surface!

There always is a 3D component to be considered.

- Even if the excited surface area is getting smaller, the probed depth doesn't change.
- Depending on the matrix and the probed element, the depth may define the probing volume.

Thin section of $\sim 25 \ \mu m$ thickness

Spatial resolution ... and information depth

- Ultimately, the maximum achievable resolution depends on the matrix of the sample and the information depth of the elements to be resolved.
- In a rock sample, the maximum achievable resolution should be \geq 40 μ m.
- In a metal sample, the maximum achievable resolution should be \geq 10 μ m.
- A smaller excitation spot will not necessarily lead to increased resolution.
- The drawbacks, however, will be noticeable:

Problems with non-flat samples

Problems with non-flat samples, more Bragg peaks

Information depths of selected element fluorescence lines in different matrices

Atmosphere An overview

- The atmosphere surrounding the sample is an important measurement parameter, especially when light elements are of interest.
- Of utmost importance for (map) analysis will be a stable pressure. Otherwise, any fluctuation in pressure will
 manifest in varying measured element sensitivities!

calculated for 20 mm distance betwenn sample and detector

Air = 78.115 % N2; 20.95 % O2; 0.934 % Ar

		Air	Air	Air	Air	He
Element	Energy in keV	1000 mbar	200 mbar	20 mbar	2 mbar	800 mbar
С	0.3	0.0	11	80	98	43
Ν	0.4	0.4	33	90	99	71
0	0.5	0.0	0	54	95	87
F	0.7	0.0	1	65	96	94
Na	1.0	0.1	23	86	99	98
Ca	3.7	80	96	100	100	100
Fe	6.4	96	99	100	100	100

transmission of X-rays --

Samples

Anything from 7 kg of massive samples to powders and liquids can be measured with micro-XRF.

6. Sample stage

© 2022 Bruker

BACK TO THE ROOTS - PART I

The stage Fast and precise

- The sample stage needs to fulfill (at least) three conditions:
 - It should be able to move large samples (which may get heavy).
 - It must be fast
 - (to allow for short measurement times).
 - It needs to be **precise**
 - (at least more precise than the spot size).
 - Reproducible positioning is needed for multi-frame-measurements!

The stage **Reproducible positioning**

10 cycles

Manning parameters

happing parameters			
Width:	151	pixel	
	603	μm	
Height:	85	pixel	
	340	μm	
Pixel Size:	4	μm	
Total number of pixel:	12835	pixel	

Acquisition parameters Frame count: 1/1 Pixel time: 5 ms/pixel Measure time: 52 s Overall time: 3:13 min Stage speed: 800 µm/s **Tube parameter** 50 kV High voltage: 599 µA Anode current: Filter: Empty Optic: Lens Chamber at: Air 1050.7 mbar Rh Anode: **Detector parameters** Selected detectors: 1 Max. pulse throughput: 130000 cps

* For each set of data, different users derived values with 0.3 µm deviation.

100 20 30 10 Distance / µm Length=15.9 µm 8 26.3 µm Mo-KA: 85 Length=14.7 µm 7 25.1 µm Mo-KA: 77

(14.6 ± 0.3*) µm

(15.9 ± 0.3*) µm

Distance / µm

0-

0

7. Detectors and "clean spectra"

Detectors ... and their entrance window

Detector sensitivity for different window types

Detectors ... and their entrance window

- The ability to see the carbon Kα fluorescence is to be considered a benchmark for the sensitivity of the instrument.
- The M4 TORNADO PLUS is not well-suited for quantitatively analyzing carbon! Especially not when scanning.
- In this spectral region the sensitivity is low, line overlap and interelement effects are very pronounced and the information depth is very different from the other elements.
- A detector that can see the X-ray fluorescence of carbon is, of course, more sensitive for all light elements than a conventional detector.
- It's twice as sensitive for Mg-Kα (at 1.25 keV).
- For higher energies, the Si support grid still acts as a filter.

Detectors ... and clean spectra

8. Data mining possibilities

Data mining The HyperMap datacube

- Position tagged spectroscopy is state of the art.
- We call our dataset "HyperMap".
- For each pixel in a map, the complete spectral data is saved.
- The data are then available for offline analysis – even years later.

channel

BACK TO THE ROOTS - PART I Data mining

• With the complete spectral data available, multiple ways of data display and evaluation are made possible.

TCUPATION - SPECTPUM ELEMENT

Data mining FP quantification

CONFIGURATION - SPECTROM ELEMENTS	<u>~</u>
ements	
✓ Use spectrum elements	
H Use list elements He	
Li Be Search additional elements B C N O F Ne	
Na Mg Al Si P S Cl Ar	
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr	
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn	
Fr Ra Ac Ce Pr Nd Pm Sm Fu Gd Th Dy Ho Fr Tm Yh Lu	
The Paul No Pu Am Cm Bk Cf Es Fm Md No Lr	
ouble click an element to open element editor Clear all	

Special properties of selected elements

Type-calibrated FP Quantification.

Grade-IARM	AI 🔼	Co 💌	Cr 💌	Cu 💌	Fe 💌	Mn 🚬	Mo	Nb 🔼	Ni 🚬	P	Pb 🚬	Si 🚬	Sn 🚬	u	V _	W 🚬	Zn 🚬	Zr 💌
CDA314-72B	Т	Т	Т	90.1	0.0	Т	Т	Т	0.0	0.0	2.0	0.0	0.0	Т	Т	Т	7.8	Т
CDA360-73B	0.0010	0.0	Т	61.5	0.2	0.0	Т	Т	0.1	0.0	2.7	0.0	0.2	Т	Т	Т	35.3	Т
CDA485-76B	0.0050	0.0	Т	60.5	0.1	0.0	Т	Т	0.0	0.0	1.9	Т	0.7	Т	Т	Т	36.7	Т
CDA510-77B	0.0010	Т	Т	95.2	0.0	0.0	Т	Т	0.0	0.1	0.0	0.0	4.7	Т	Т	Т	0.0	Т
CDA544-78B	0.0020	Т	Т	87.7	0.0	0.0	Т	Т	0.1	0.2	3.9	Т	4.7	Т	Т	Т	3.6	Т
CDA623-79B	9.1900	0.0	0.0	88.4	2.1	0.2	Т	Т	0.1	0.0	0.0	0.0	0.0	Т	Т	Т	0.0	Т
CDA630-80B	10.1900	0.0	0.0	81.2	3.3	0.5	Т	Т	4.7	0.0	0.0	0.0	0.0	Т	Т	Т	0.1	Т
CDA642-81B	6.7000	Т	0.0	91.2	0.0	0.0	Т	Т	0.0	0.0	0.0	1.8	0.0	Т	Т	Т	0.2	Т
CDA655-82B	0.0020	Т	0.0	95.3	0.1	1.0	Т	Т	0.0	0.0	0.0	3.2	0.0	Т	Т	Т	0.4	T
CDA706-84B	0.0020	0.0	0.0	87.9	1.3	0.6	Т	Т	10.0	0.0	0.0	0.0	0.0	Т	Т	Т	0.1	Т
CDA836-86C	0.0020	Т	Т	84.6	0.2	0.0	Т	Т	0.3	0.0	5.0	0.0	4.4	Т	Т	Т	5.4	T
CDA857-87B	0.2000	0.0	0.0	60.9	0.3	0.0	Т	Т	Т	0.0	1.6	0.0	0.8	Т	Т	Т	36.1	Т
CDA932-91C	0.0020	Т	Т	83.2	0.0	0.0	Т	Т	0.5	0.1	6.8	0.0	6.8	Т	Т	Т	2.6	Т
CDA937-BS937B-1	Т	Т	Т	80.2	0.0	Т	Т	Т	0.4	0.0	9.2	Т	9.7	Т	Т	Т	0.0	Т

Data mining Phase analysis

- Pixels of an element distribution map can be sorted into "phases" of similar intensity.
- Sum spectra of these "phases" allow to identify element correlations, to find associated traces, or to generally sum up separate inclusions to get spectra with better statistics.
- Additional information, such as area ratios of the phases, may hold information valuable for quality control.

Data mining Displaying complex data

- Some scientific communities are used to certain ways of data display.
- Transferring data to other workspaces within the software allows for different data treatment.
- Export to text files makes it available for analysis and presentation with external software.

Innovation with Integrity

Innovation with Integrity