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1. Introduction 4. PASEF in Lipidomics 6. Accurate and precise ""™SCCS measurement

Despite consisting of few building blocks, lipids form a highly diverse group of biomolecules _
with important biological function. Established liquid chromatography — mass spectrometry TIMS-MS/MS
(LC-MS) workflows sample the lipidome with high throughput, but limited selectivity and high
starting amounts. We present a high-sensitivity workflow based on nanoflow separation and
trapped ion mobility spectrometry (TIMS) [1]. By synchronizing TIMS separation with precursor
selection (PASEF), we have recently demonstrated an over 10-fold increase in MS/MS
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Figure 5. Precise and accurate determination of lipid "™SCCS values. a, Pearson correlation of "™SCCS values of 6,100 4D features
detected in two replicate injections of a human plasma lipid extract. b, Coefficients of variation (CV) of "™SCCS values for lipids commonly
identified in replicate injections of the same sample (plasma) and c, three different samples (plasma, liver, HeLa). d, Relative deviation of
experimental "™SCCS values in this study from literature reports [4, 5] and e, machine learning predictions [5].
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Figure 1. Instrument schematic of the timsTOF Pro. lons are generated in an electrospray source, transferred into the vacuum system 200 A 1000 - Oxidized glycerophospholipids
through a glass capillary, deflected by 90° , and focused into the dual TIMS analyzer. In the first TIMS analyzer ions are accumulated while ® PC
another batch of ions is separated by ion mobility in the second TIMS analyzer. lons transferred through a multipole and can be isolated by the 0 J 0 ® PE
analytical quadrupole mass filter for optional subsequent fragmentation in the collision cell. Afterwards, narrow ion packages are accelerated 0o 2 4 6 8 10 12 14 16 18 II;IIuman E’.Iouse He"La cg:“ ® PA
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Figure 3. Evaluation of PASEF in lipidomics. a.b. Heat-map visualization of a representative trapped ion mobility resolved mass spectrum of ® PG _ o
human plasma. Red dots indicate precursors selected for MS/MS fragmentation in the subsequent 100 ms PASEF scan. c. Distribution of the ® Phosphosphingolipids
number of precursors per PASEF scan analyzing human plasma lipid extract. d. Total number of 4D features extracted from 30 min runs of Sterols (Chol. & der.)
fl | - - - kfl human plasma (n=4), mouse liver (n=5) and human cancer cells (n=5) in positive ion mode without (TIMS-MS/MS, red) and with PASEF ® Sterols (Steryl esters)
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El:\:/lj | ] | Figure 4. Lipid identification and label-free quantification. a. Sequential data analysis steps from the total number of detected 4D We conclude that TIMS and PASEF enable highly sensitive and accurate 4D lipidomics, and
features to unique lipids for human plasma, mouse liver and human cancer cells in both ionization modes. b. Fraction of lipids quantified in N - P - - - - -
MetaboScape 4.0 Reference MS/MS SimLipid 6.05 out of four replicate injections of plasma. c. Coefficients of variation for 437 lipids label-free quantified in at least two out of four replicate gene_r_ate comprehenswe dlgltal arCh_IveS of _a” det_eCtabIe _spemes along _Wlth very p_reu_se 'on
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