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Abstract

Due to the dynamic nature of an ionized

peptide, a unique peptide sequence can adopt a

range of possible mobilities [1] as well as

multimodal or non-parametric distributions.

Standard machine learning methods, based on

linear regression, are not suited to fit such

distributions. They will learn to predict the

mean of the distributions in order to minimize

the mean squared error (MSE). Previous

attempts to train deep learning models to

predict a peptides ion mobility relied on pre-

processing the distribution into a single

mean/median value. While these models

demonstrate great capabilities, they lose

valuable information regarding the effects that

the peptide sequence has on its mobility

distribution. Furthermore, these approaches

cannot learn the effects which sequence pose

on the standard deviation of the mobility

distribution. Without a method to interpret the

specificity, the true potential of mobility

predictions cannot be utilized. To combat these

limitations, we created pimMDN which utilizes a

Mixture Density Network (MDN) [2] to model

nonparametric and multimodal distributions, as

a well as provide a metric of prediction

specificity.
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Model Structure

Dataset: PXD010012 [3]

Experiments: HeLa_Fractions & HeLa_200ng_100ms

Search: Ip2 prolucid search engine [4]

Fig. 6. Depicts PepMDN model structure. The
peptide feature dense layers consist of relu
activation and 256 units. The peptide sequence
encoding layer uses 20 embedding units. The
biGRU layers have 256 and 128 hidden units,
respectively. All other dense layers have 512 units
and relu activation functions. The MDN uses 64
mixture components. All hyper parameters were
tuned using keras-tuner.
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Fig. 2. Kolmogorov-Smirnov test (p-value) cluster 
map for experiments pre and post alignment.

The reported mobilities can shift over time leading

to misaligned experiments. It is important to

correct any misalignment prior to training. To do this

we selected the experiment with the most unique

peptides as the reference and align all subsequent

experiments to it. Fig 2. illustrates that the

experiments mobility distributions become more

similar with alignment.

Data Upscale

Fig. 3. Left image depicts the fitting of a KDE to the
ion mobility distribution. Right image depicts the
distribution after being sampled from the KDE.

Fig. 4. Distribution of
charge states across all
up/down scaled peptides.

Data Summary
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Fig. 5. The distribution of N-term/C-term amino
acids.

Charge 1 and 4 peptides were excluded because

they comprised a small portion of the overall data.

Furthermore, peptide with < 7 residues, and > 30

residues were excluded. Training and testing sets

were split 9:1 over unique peptides.

Training

Single Value Results

PimMDN utilized Negative Loss Likelihood as the

loss function and Adam as the optimizer.

PepMDN was trained for 10 epochs on a Titan V

GPU, with a batch size of 64. Total training time

was 5 hours, achieving a testing loss of -2.67.

+3 R-value  =  0.94        +2 R-value  =  0.99

Distribution Results

Fig. 7. Predicted vs experimental mobility values
for both +2 and +3 peptides.
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Mixture Density Network

Introduction

Database searching and spectral library

matching are the leading methods for

quantifying and identifying peptides in mass

spectrometry-based proteomics. Though these

methods can be improved through incorporating

other peptide specific variables, such as ion

mobility. We created PimMDN to maximize the

contribution that ion mobility measurements

can make to proteomic search methods.

Current mobility models predict a single value

but PimMDN predicts the entire mobility

distribution.

Fig. 1. The structure of an MDN is very
simple. It’s a combination of a Deep Neural
Network (DNN) and a mixture model. It can
theoretically model any probability
distribution.

After alignment there still existed an uneven number

of samples per peptide. Without correcting for this,

the data would be unbalanced and lead to training

instability. We decided to upscale peptides with

fewer samples, and downscale peptides with many

samples. Peptides with less than 10 samples were

excluded from this process because their sample

distribution is too small to model the parent

distribution. A cutoff of 10 was chosen because it

maximized the total number of samples while still

maintaining a large proportion of unique peptides.

Peptides were then up sampled/down sampled to 32

through fitting and then sampling a Kerel Density

Estimation function (KDE).

Fig. 8. Kolmogorov-Smirnov test for mean
aligned experimental and predicted distribution.
We used an alpha value of 0.05. The KS-test
assumes that the distributions are the same.
Failing to reject this hypothesis means that the
experimental and predicted distributions are
similar.

Total unique peptides: 28,913

Unique +2 peptides : 23,946

Unique +3 peptides : 4,843

Overall PimMDN is highly accurate for +2, but

slightly less accurate for +3. This can be

attributed to there being less +3 peptides in the

data. The “Single value results” demonstrates

that PimMDN learned to place distributions

correctly. Similarly, the “Distribution results”

demonstrates that PimMDN learned to predict the

overall shape of the mobility distributions.
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