Heating experiments in STEM-EDS

Bruker Nano Analytics, Berlin, Germany Webinar, August 29, 2018

Dr. Meiken Falke

Global Product Manager TEM Bruker Nano Analytics, Berlin, Germany

Mauro Porcu

Marketing Manager DENSsolutions, Delft, Netherlands

Dr. Igor Németh

Application Scientist, EDS Bruker Nano Analytics, Berlin, Germany

Part 1. (S)TEM sample holder optimization

Mauro Porcu, DENSsolutions

- In-situ applications
- The new heating Nano-chip
- Wildfire product family

Part 2. Heating experiments (EDS mapping study at elevated temperatures) - Igor Németh, Bruker Nano

- IR effects under control: low energy threshold, peak broadening
- Demonstrate elemental mapping results up to 1000° C for the first time in literature
- Autophase results

INNOVATIONS THAT MATTER

The Wildfire solution: superior in situ TEM heating

Mauro Porcu, Marketing Manager

INNOVATIONS THAT MATTER

The power of In Situ TEM

Traditional TEM

The power of In Situ TEM

*

The benefit of in situ heating

Precipitation hardening of metal alloys

Challenges:

• Optimising heat treatments in the production process

Process and Property relation

4

INNOVATIONS THAT MATTER

Correlate structure with properties

Precipitation hardening of metal alloys

INNOVATIONS THAT MATTER

Correlate structure with properties

Precipitation hardening of metal alloys

"For this we used the MEMS based heating holder which allows precise control of the temperature, a very low specimen drift and high stability of the sample during heating."

In situ heating applications

The new heating Nano-Chip

Optimized heater's dimensions and shape Improved stability, temperature uniformity and IR emission

Optimized for sample handling

Largest viewable area and optimum design to safely handle the most common types of samples

> 850 µm² Viewable area

Optimized for different samples

Increased success rate

Results you trust

Local temperature measurements Resistance as a temperature indicator

Temperature **accuracy** and **homogeneity proven by customers** by local measurements in TEM

The local sample temperature is measured in TEM by NB electron diffraction. Results indicate a high temperature uniformity with deviations around 3%.

Florian Niekiel, et al. Ultramicroscopy (2016).

Full S/TEM performance guaranteed

The best TEM performance in any environment

11

Never miss a thing

The highest sample stability in 3 dimensions

<0.3 nm/min Drift rate at 1000 °C after <60 s

Less bulging: better resolution?

From RT to 750 °C, image refocused with FOCUS

NEW design

PREVIOUS design

Fast results with more impact

Impulse, the next-gen in situ SW

W impulse

Features:

- Synchronized control of all in situ stimuli
- Graphical profile builder
- Fully customizable UI

Benefits:

- Easily correlate all the in situ parameters
- Set up complex experiments with only few mouse clicks
- Monitor conveniently only the parameters that matter

The complete Wildfire range

Our products

Thermo Scientific TEM

Wildfire H	Wildfire H+	Wildfire H+ 3D	Wildfire H+ DT
RT – 600 °C	RT – 1300 °C	RT – 1300 °C	RT – 1300 °C
±30 ° alpha tilt	±30° alpha tilt	±70° alpha tilt	±25° alpha and beta tilt

14

The complete Wildfire range

Our products

JEOL TEM

Wildfire H	Wildfire H+	Wildfire H+ DT
RT - 600 °C	RT - 1300 °C	RT – 1300 °C
±20 ° alpha tilt	±20° alpha tilt	±20° alpha tilt ±15° beta tilt

15

Our products

Portfolio & focus

INNOVATIONS THAT MATTER

Thank you for your time http://denssolutions.com/events/imc19/

Part 2. Heating experiments in STEM-EDS

Outline

- Demonstrate element mapping results at 1000°C for the first time
- Heating can cause sample drift and membrane bulging
- Infrared radiation disturbs X-ray detection
 - Effects of heat and IR-radiation on EDS signal detection: noise effects and peak broadening
- Elemental maps of Au/Pd nanoparticles
- Autophase results: tracking phase transition

System parameters EDS

System configuration				
Microscope type	JEOL JEM-2200FS, UHR polepiece, operated at 200kV			
Detector type	Bruker X-Flash $\mbox{\ Bruker}$ 5030T, 30mm ² active SDD chip size, 0.12 sr solid angle			
SW configuration	Hypermap, drift correction, Autophase			
SW options	online deconvolution – included in basic SW package			
Sample holder	DENS Solutions, Wildfire in-situ heating sample holder			

STEM located at the Humboldt University of Berlin, Institute of Physics

We thank Dr. Holm Kirmse (HUB) for operating the STEM and

Sander van Weperen (DENSsolutions) for operating the Wildfire system!

IR-radiation and heating affecting SDD

IR-radiation effect – low energy threshold

IR-radiation effect – peak broadening

- Stronger peak broadening at lower energies
- Peaks are still significantly strong to use EDX signal for element mapping

IR-radiation effect – peak broadening

- Stronger peak broadening at lower energies
- Peaks are still significantly strong to use EDX signal for element mapping

Au/Pd sputtered on a silicon-nitride membrane.

Nominal layer thickness: 10nm

The Au/Pd material system is a good model system to demonstrate processes like

- dewetting, element segregation within nanoparticles
- nanoparticle size and shape change
- evaporation of elements (Au) due to melting temperature differences

Measurement parameters EDS and STEM

Measurement parameters		STEM-EDS geometry parameters		
Map size	256 x 246 pixels	Take off angle	22°	
Pixel size	0.55 nm	Solid angle	0.12 sr	
Mapping time	15 minutes	Sample tilt	0°	
Input count rate	220-260 cps	Beam current	350pA	
Drift correction	active	SDD window	Super Light Element Window (SLEW) AP3.3 (Moxtek)	

Mapping at different temperatures

RT, 500, 600° C: random sample areas

700-1000°C: same sample area

800°C

HAADF

HAADF

500°C HAADF

900°C

1000°C

Maps with autofilter Au M-lines (2,123kV) & Au L-lines (9,704kV)

Au M-lines

14

Autophase - find "similar" areas in a map

Autophase workflow:

All spectra in a Hypermap can be described with as an n-dimensional data vector. Autophase uses different algorithms (like PCA) to identify and sort "similar" spectra within the map.

Autophase results

700°C

P2

P3

Au 30,5 %

10,3 %

Au/Pd material system undergoes changes with increasing temperature:

- Ostwald ripening
- element segregation within nanoparticles: Au and Pd segregation
- shrinking of nanoparticles (material loss: individual particles decreasing)
- evaporation of elements (Au) due to melting temperature differences
- area coverage of Au is decreasing with increasing temperature

=>quantitatively measured using AutoPhase

- Demonstration and control of IR effect on EDS spectra using optimized in-situ sample holder
- Unprecedented in-situ heating study in STEM at temperatures up to 1000° C
- Esprit HyperMap and AutoPhase tool tracks phase transition of Au/Pt nanoparticles by measuring phase area coverage

Further information:

Advanced microheater for *in situ* transmission electron microscopy; enabling unexplored analytical studies and extreme spatial stability

Ultramicroscopy 192 (2018) 14–20

doi: 10.1016/j.ultramic.2018.05.005.

Q&A session

Please type in the questions you have in the Q&A box and press **Send**.

Innovation with Integrity