Elements of the cosmos: what STEM-EDXS can tell us about the history of materials of the Universe

Guest speaker: Rhonda Stroud

Elements of the cosmos: what STEM-EDXS can tell us about the history of materials of the Universe

Moderator:

Dr. Igor Nemeth Application Scientist EDS, Bruker Nano Analytics

Guest Speaker Dr. Rhonda Stroud

Research Physicist, US Naval Research Laboratory

Dr. Meiken Falke

Global Product Manager EDS/TEM, Bruker Nano Analytics

Single/multiple EDS

Ma et al., 2015, Current Biology 25, 2969-2975 http://dx.doi.org/10.1016/j.cub.2015.09.063

Annular EDS, FlatQUAD

Open access under the CC BY-NCND license: http://creativecommons.org/licenses/by-ncnd/4.0/

Annular EDS, Flat QUAD

Composite net intensity map of a Mocs meteorite specimen: a cracked surface with lead deposits (red) within the cavities

K: Interpretive drawing of a Cambrian arthropod fossil

A: Carbon-traces in direct illumination

B: EDS of C, Fe

EBSD +

Indentation etc. experiments and orientation mapping In Duplex steel

600

400

Geometric constraints in SEM and TEM: aiming for the <u>nm scale and below</u>, Solid and take-off angle are important to consider!

Windowless high collection angle EDS with 100mm² oval silicon drift detector and All advantages of the ESPRIT analysis software

XFlash®6-100 oval for SEM

Tailored to individual pole piece geometry Accelerating voltage up 300 kV, UHV compatible

- Solid angle up to 0.7 sr or e.g. 0.4 sr
- Take-off angle up to 13.4°, adaptions vary

- Accelerating voltage up to 30 kV
- Optimized for each microscope geometry
- Solid angle of up to 0.4 sr

XFlash®6T-100 oval for STEM

Example of STEM EDS using XFlash®6T-100 oval on TFS Titan: Quantitative Element Mapping of Semiconductor Nanostructures Deconvolution and Quantification Result

Data Courtesy: ACE

Example of STEM EDS using XFlash®6T-100 oval Nion UltraSTEM: Element Mapping of Multiferroic Bi₆Ti_xFe_yMn_zO₁₈

Raw cala

TCD (Trinity College Dublin) Nion UltraSTEM200XE 200 kV, Dedicated STEM, CFEG; $\Omega \sim 0.7$ sr, TOA > 13°

432x225 pixels,

4.1 msec/pix => 400 sec for map. No drift correction.

Bi = green, Ti = blue.

courtesy Lynette Keeney, Clive Downing and Valeria Nicolosi. TCD, Ireland.

Specimen:

 $Bi_6Ti_xFe_yMn_zO_{18}$

See:

"Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material" Scientific Reports **7**, Article number: 1737 (2017) open access

L. Keeney at al.: Scientific Reports **7**, Article number: 1737 (2017) open access

Elements of the cosmos: what STEM-EDXS can tell us about the history of materials of the Universe

Moderator:

Dr. Igor Nemeth Application Scientist EDS, Bruker Nano Analytics

Guest Speaker
Dr. Rhonda Stroud

Research Physicist, US Naval Research Laboratory

Dr. Meiken Falke

Global Product Manager EDS/TEM, Bruker Nano Analytics Elements of the cosmos: what STEM-EDS can tell us about the history of materials of the Universe

Rhonda Stroud

USAP

Solar systems origins written in gas and dust

Fossils of Early Solar System

Laboratory Samples

Nittler and Ciesla (2016)

Secrets of the Early Solar System to be **Revealed by Laboratory Analysis**

Nittler et al.

Nature Astronomy (2019)

- **Essential Science**
 - What were the original ingredients or our solar system?
 - Why life on Earth? Where else?
 - Are there technologically useful materials in the cosmos?
- **Coordinated Microanalysis provides answers**
 - SEM + SIMS + FIB + STEM + XANES

Cometary building block

found in a meteorite 100 nm 10 nm MgSiFe

5 GKm

ALMA Image of

Protoplanetary disk

Secrets of the Early Solar System to be Revealed by Laboratory Analysis

- Essential Science
 - What were the original ingredients or our solar system?
 - Why life on Earth? Where else?
 - Are there technologically useful materials in the cosmos?
- Coordinated Microanalysis provides answers
 - SEM + SIMS + FIB + STEM + XANES

Nion UltraSTEM 200-X 0.7 sr Bruker SDD Xflash 100 Gatan Enfinium ER

STEM-EDS of SiC from an AGB Star Singerling et al., in review

Internal structure reveals complex condensation history from > 4.5Gy ago

Implications for Circumstellar Conditions

SiC Stardust from another AGB star

0.11 at% Al 0.52 at% N 2.1 at% Al 3.0 at% N

b Ti(V,Zr,Fe,Mo,Ni)C

Ti(Zr,V,Fe,Ni,Mo)C

Different Circumstellar Conditions

Nanodiamonds - from q-bit to stardust

- Nanodiamonds are broadly scientifically important
 - Common polishing compound, wear-resistant coatings
 - Biocompatible, functionalizable surface
 - Nitrogen and Si vacancy complexes for photoluminescence, spintronics / quantum computing

Commercial irradiated nanodiamonds Sigma-Aldrich

Cosmic Nanodiamonds

- Nanodiamond residue prepared by acid dissolution of meteorite
- First phase found in meteorites with an isotopic signature of extrasolar origin
 - Kr and Xe isotopes indicative of supernova origin, Lewis et al., *Nature* (1987)
- But only ~ 1 Xe per 10⁵ nanodiamonds, and solar C and N isotopic composition
- Most nanodiamonds could have formed in Solar System

Huss and Lewis, MAPS (1994).

stepped pyrolysis

EDS "Average" Nanodiamond Composition (~ 9x12 nm²)

EDS of individual impurity particles

5 nm

0.8 nm Ir particle

EDS on and off a Si atom

Stroud et al., Applied Phys. Lett. (2016)

Identification of Vacancy Centers in Diamond with EELS Calculated C-K edge spectra

Chang et al., Nanoscale 2016

Hot stage STEM-EELS Comparison with Stepped Pyrolysis

Nitrogen released from diamonds in "P3" temperature range, i.e., most likely solar system formed

Simultaneous EDS and EELS Spectrum Image of N-V Center in Nanodiamond

SI Analog HAADF Image Sub-pixel imaging

Simultaneous EDS and EELS Spectrum Image of N-V Center in Nanodiamond

Simultaneous EDS and EELS Spectrum Image of N-V Center in Nanodiamond

Diamond anvil cell synthesis of nanodiamond aerogel

STEM-EELS-EDXS of High Pressure / High Temperature Nanodiamond with incorporated Ar

HAADF

US Patent App. 16/297,338.

EDS Mapping of HPHT Graphitic Onion C with Incorporated Ar

Some areas with up to 40% Ar observed

Potential mechanism for archival gas storage over billions of years

Summary

- Physics and chemistry of materials are the same in space as on Earth
- Nanomaterials are as old as the stars

> 4.5 billion year old SiC

 Atomic-scale structure key to materials growth, history, & properties

Are there any questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Innovation with Integrity