

Life Cycle of Critical Metals: Compositional quantification of REE-bearing materials

Christian Hirschle and Andrew Menzies

Bruker Nano Analytics

Presenters

Christian Hirschle, PhD

Applications Scientist Bruker Nano Analytics Berlin, Germany

Andrew Menzies, PhD

Sr. Applications Scientist Geology and Mining Bruker Nano Analytics Berlin, Germany

Introduction: Critical Metals

)2 Micro-XRF analysis

5 Summary and Conclusion, Questions and Answers

Critical Metals and the Green Technology Future

- Transition to the new technologies, lower carbon footprints, and a more sustainable future requires increased supply of metals
 - Battery metals
 - Magnets
 - Touch screens, glass
 - Body / frame materials
 - Wiring for technology and infrastructure

Reproduced from: Canada Action (<u>https://www.canadaaction.ca/canada-electric-vehicle-tech-minerals-opportunity</u>); original work by: Jason Burton

Critical Metals and the Green Technology Future

- One issue we face is the projected gap between existing and projected production from known resources
- To improve this position, several strategies can be considered
 - Discovery of new resources
 - Improved and efficient extraction as by-product metals in deposits of other commodities
 - Re-mining of waste and tailings for commodities previously not considered of economic importance
 - Recycling

Example of the projected gap between existing and projected supply of cobalt Similar short-falls are predicted for other commodities critical to green technologies

Importance of Critical Metals to the Green Technology Future

Lithium-ion Battery Requirements

Source: BloombergNEF. Note: Metals demand occurs at mine mouth, one-year before battery demand. All metals expressed in metric tons of contained metal, except lithium, which is in lithium carbonate equivalent (LCE).

Source: BloombergNEF

Demand outlook for key transition metals

Source: Wood Mackenzie

Note: The demand for lithium, cobalt and graphite refers to battery-grade materials only

Source: Wood & Mackenzie, 2022 report,

https://www.woodmac.com/news/opinion/energy-transition-metals-the-esgdilemma/

Rare Earth Elements (REE's): Essential to modern-day technologies

MAGNETS Nd, Pr, Sm (Tb, Dy) Motors and generators, HD Drives, Microphones and Speakers, MRI, Defence applications. lagnetic refrigeration metallic state La, Ce, Pr, Nd, Y NimH batteries Fertilizer, Pigments, luclear, Medical Tracer Superalloys, Al - Mg alloys, Stee 9 Ce, La, Pr, Nd, Gd, Er, Ho REE SHORE Eu, Y, Tb, Nd, Er, Gd (Ce, Pr) LED, Laser, Flat Panel Display, Fluorescent oxidized state La, Ce, (Pr, Nd) lamps, Xray imaging, Optical sensors, Petroleum Refining Automotive Catalysts Fibre Diesel Additive, Water CATALYST 100 & CHEMICAL PROCESS

Source: http://www.eurare.org/RareEarthElements.html Source: https://geology.com/articles/rare-earth-elements/

Rare Earth Elements (REE's): Introduction

- Group of 17 chemically similar metallic elements, including the 15 lanthanides as well as scandium and yttrium.
- Chemically similar: easily substitute for each other and often occur together within various minerals
- Earth's crust abundance of < 10 ppm</p> (Rudnick et al., 2003)
- Do NOT occur naturally as metallic elements, but
- Do occur in a wide range of mineral types, for example halides, carbonates, oxides, phosphates and silicates.

5

HEAVY Rare Earth Elements LIGHT Rare Earth Elements

Source: https://geology.com/articles/rare-earth-elements/

15 lanthanides Lanthanum [La] Cerium [Ce] Praseodymium [Pr] Neodymium [Nd] Promethium [Pm] Samarium [Sm] Europium [Eu] Gadolinium [Gd] Terbium [Tb] Dysprosium [Dy] Holmium [Ho] Erbium [Er] Thulium [Tm] Ytterbium [Yb] Lutetium [Lu] And Scandium [Sc] and Yttrium [Y]

What is micro-XRF?

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Qualitative and quantitative X-ray fluorescence analysis Counting atoms

- XRF is widely known for quantitative analysis. Why? Because it works so straightforwardly.
- An atom in an X-ray beam will produce element specific fluorescence radiation.
- Two atoms of the same type will produce twice as much fluorescence radiation.
- Many different atoms in the X-ray beam will all produce their characteristic fluorescence radiation.
 - Detecting the radiation with wavelength- or energy-dispersive detectors enables qualitative analysis.
 - Counting the number of incoming photons allows to count the atoms \rightarrow quantitative analysis.

Quantitative X-ray fluorescence analysis From atoms to wt.%

- With additional information, it is possible to convert this number of "atoms in an X-ray beam" to meaningful units:
 - To get the mass coverage, the size of the irradiated area.
 - To get a layer thickness, the density of a material.
 - To get atomic concentrations, the interaction volume (spot size and penetration depth).
 - To get to mass concentration (wt.%), the weight of the atoms.

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Micro-XRF

- Micro-XRF is XRF with a small spot (typically < 20 μm)
 - \rightarrow Micro-XRF reveals where elements are
 - \rightarrow Micro-XRF is ideal for non-homogeneous samples
- It usually requires minimal or no sample preparation.
- Quantitative micro-XRF is feasible for sufficiently homogeneous areas of the sample, which can be even below 100 µm in diameter.
- The measurement conditions are very flexible in order to address different analytical tasks or requirements posed by the sample.

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Optimising REE Quantification via Micro-XRF

[wt.%]

0.000

14.282

3.870

1.521

71.338

0.175

0.351

8.331

0.045

0.003

0.076

0.001

0.002

0.003

0.003

Quantification techniques in XRF Flow of Information

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Optimizing measurement conditions for quantification of REE Filters

 \rightarrow Problem for accurate quantification: intensity from diffraction peaks cannot be separated.

 \rightarrow Filters should be used to inhibit diffraction.

Comparing filter materials:

 \rightarrow An Al-200 μm Ti-200 μm filter inhibits diffraction peaks in the relevant energy range.

Optimizing measurement conditions for quantification of *REE***Effect of filters on diffraction?**

Diffraction requires that the glancing angle θ , Xray energy $E = hc/\lambda$ and lattice spacing d follow Bragg's law.

However: The excitation spectrum is continuous! \rightarrow X-rays with "correct" energy **will** be present!

 $n\lambda = 2d\sin\theta$

Filters absorb lower-energy photons of excitation spectra. \rightarrow No photons in these energy ranges to be diffracted.

Fluorescence can still be induced via higher energy X-rays.

Optimizing measurement conditions for quantification of *REE* **Polishing — Implications for quantification?**

 $\rm NdGaO_3$ surface with controlled roughness was prepared by polishing on SiC foils.

→ Net intensities do not change within the uncertainties. → The data scatter less with increasingly fine polishing. → Finer grit than paper with SiC size of 30 µm does not improve scatter further.

- NdGaO₃ single crystal.
- Average of 9 point measurements each.
- Error bars show ±1 standard deviation.

Optimizing measurement conditions for quantification of *REE* Measurement time?

- Point measurements on NdGaO₃ and CePO₄ single crystals with varying real time.
- 10 measurements for each condition.
- Al-200µm Ti-200µm filter; appropriate surface finish.
- Quantification as oxides; $Nd_2O_3 + Ga_2O_3$ and $Ce_2O_3 + P_2O_5$.

 \rightarrow Results converge with increasing measurement time.

 \rightarrow For both materials, 90 seconds of real time appear sufficient to ensure accurate and precise results.

Quantification pathways in the M4 TORNADO

Fundamental Parameters (FP – M4 TORNADO)

- Forward calculation (M4 TORNADO): Intensities calculated based on iteratively-adjusted concentrations of elements, known physics, instrument,
- Calibration possible:
 - Correction for uncertainties of fundamental parameters and interactions with incomplete descriptions.
 - Compensation for deviations from idealized sample state.

→ Empirical and FP based quantification **both** need reference materials for high accuracy/validation.

FP based quantification chosen here: higher flexibility, more convenient workflow.

Empirical (XMethod)

 Concentrations derived from comparing intensities of the sample and reference materials with known composition.

Calibrating FP based quantification in the M4 TORNADO

FP Quant correction factor:

Adjusts sensitivities for specific transitions, which are part of the FP model.

Empirical corrections:

Apply a linear correction to the quantified concentration after the FP quantification has concluded.

Both Quant correction factor and Empirical corrections can be used.

Reference Materials

Possible reference materials

- Commercial reference materials
 - \rightarrow Do these exist for these materials?
- Materials with "known" composition
 - \rightarrow In-house standards; composition from other method?
- Self-made reference materials.

Requirements:

- Composition similar to sample.
- Homogeneous in appropriate volume.
- Ideally certified.

Creating your own reference materials

Pressed pellets as reference materials:

Mixed according to approximate sample composition.

Possible issues:

- Non-homogenous powders: Nano-powders theoretically ideal, but does that reflect real sample?
- Possibly difficult to compact powders.
- Specifically, for RE_2O_3 : often hygroscopic.

Smithsonian Microbeam Standards

Complete set of all *RE*PO₄ available as reference materials: Smithsonian reference samples for Microbeam Standards

Meant to be electron-microprobe standards!

Smithsonian Microbeam Standards

Challenges:

- Meant for electron excitation.
- \rightarrow Low thickness.
- \rightarrow Area needs to be chosen carefully.
- \rightarrow Sample may need to be rotated.
- Synthetic crystals grown from a Pb₂P₂O₇ flux.
 → varying Pb contamination.

Quant correction factors: Trends within the REE

Based on Smithsonian Microbeam standards.

- Quant correction factors are similar for elements with similar cationic number.
- A clear trend for the Quant correction factor is observed.
- Reference materials have to be analyzed carefully.

 \rightarrow Calibration factors for elements without standards may be estimated based on materials where there is no standard?

How valid is this approach?

Quant correction factors: Trends within the REE

BRUKER

Based on Smithsonian Microbeam standards:

- Quant correction factors are similar for elements with similar cationic number.
- A clear trend for the Quant correction factor is observed.
- Reference materials have to be analyzed carefully.

 \rightarrow Calibration factors for elements without standards may be estimated based on materials where there is no standard?

How valid is this approach?

Quant correction factors: Trends within the REE

- Quantification of all 14 RE via L lines that fall into limited energy range.
- Absorption edges of neighboring *RE* are similar.
- \rightarrow Good chances that physical effects that affect quantification have similar impact and can be similarly compensated for.

However: Entire spectra need to be considered!

Quant correction factors: Trends within the *REE* Samples with high Fe concentration

 \rightarrow Both Fe lines can excite La via all three absorption edges, Pr via some edges and Gd via none.

 \rightarrow Different inter-element effects in these systems; quant correction factors expected to be different.

REScO₃: An alternative to REPO4

- (Commercially) available as single crystals with perovskite-type structure for RE = Pr—Dy.
- Use as substrate material for (epitaxial) crystal growth for, e.g., ferroelectric/multiferroic materials.
- Exchanging the *RE* facilitates strain engineering.

| Innovation with Integrity

29

REScO₃: An alternative to REPO4

- Single crystals: Deviations from RE:Sc = 1:1 reported in literature [1,2], e.g., (□_{0.045}Sm_{0.955})ScO_{2.933}.
- \rightarrow Non-Stoichiometry affects data in appreciable way. \rightarrow Conclusions concerning correction factors of

neighboring elements hold.

 \rightarrow Correction factors from phosphates and scandates similar, as primary inter-element effects are already corrected for both systems.

REScO₃: Self-made reference materials

- In-house reference materials prepared: Pressed pellets of dehydrated RE-oxides and Sc₂O₃.
- Storage in N₂ due to hygroscopic nature.
- However: Powders not ground no Nanopowders!
- \rightarrow Results follow expectations, despite imperfect sample preparation.

La₂O₃ is the most hygroscopic chemical here.

Samples with low *RE* concentrations and complex makeup Nanopowders

- Nanopowders: Samples with complex composition.
- *RE*-concentrations comparatively miniscule.
- Four samples contain (enough) Ce.
- \rightarrow Quantification can be calibrated based on multiple reference materials.
- \rightarrow Correction factor derived by linear fitting of quantified and certified weight fractions; high-Ce data only: **1.38(5)**

Why so (comparatively) imprecise? Why exclude low-Ce data?

- Average of 10 measurements each.
- 20 minutes real time due to strong Al-200µm Ti-200µm filter, low concentrations and pronounced overlap.

Samples with low *RE* concentrations and complex makeup Nanopowders

Deconvolution unreliable due to:

- Ce-peak very small due to low concentrations and strong filter.
- Overlap with multiple elements: Ba, Ti, La, V, Cr depending on the sample.
- \rightarrow Calibration based on samples, where Ce signal is more distinct.

Lower precision due to:

- Lower *RE*-signal.
- Mixing of more varied reference materials: RE subject to varying interactions.

→ Could be improved by more conscious selection of reference materials/adjustment of measurement times.

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Calibrating FP based quantification in the M4 TORNADO Glass reference materials

BRUKER

Glass reference materials: strongly varying primary components:

D2: 22% B_2O_3 , 21% AI_2O_3 , 14% CaO, 10% Na_2O_2 **F2**: 57% SiO₂, 18% K₂O **C3**: 27% AI_2O_3 , 19% B_2O_3 , 16% P_2O_5 , 10% SiO₂ But some *RE* are present!

Calibrating FP based quantification in the M4 TORNADO Glass reference materials

High variation in chemistry:

 \rightarrow High scatter for correction factors expected.

→ Correction factor for Ce is 1.33(8) Nanopowders was 1.38(5)!

- Trends within RE still observed.
- If no reference materials available: Correction factor from neighboring element may be applicable.

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Examples

Rare Earth Elements: Geology – major deposits

Mineral	Formula	Approximate REO %			
Aeschynite-(Ce)	(Ce,Ca,Fe,Th)(Ti,Nb) ₂ (0,OH) ₆ .	32			
Allanite-(Ce)	(Ce,Ca,Y) ₂ (AI,Fe ³⁺) ₃ (SiO ₄) ₃ OH.	38			
Apatite	Ca ₅ (PO ₄) ₃ (F,CI,OH)	19			
Bastnäsite-(Ce)	(Ce,La)(CO ₃)F	75			
Brannerite	(U,Ca,Y,Ce)(Ti,Fe) ₂ O ₆	9			
Britholite-(Ce)	(Ce,Ca) ₅ (SiO ₄ ,PO ₄) ₃ (OH,F)	32			
Eudialyte	Na4(Ca,Ce)2(Fe ²⁺ ,Mn,Y) ZrSi8O22(OH,Cl)2(?).	9			
Euxenite-(Y)	(Y.Ca.Ce,U,Th)(Nb,Ta,Ti) ₂ O ₆	24			
Fergusonite-(Ce)	(Ce,La,Nd)NbO4	53			
Gadolinite-(Ce)	$(Ce,La,Nd,Y)_2Fe^{2+}Be_2Si_2O_{10}$.	60			
Kainosite-(Y)	Ca2(Y,Ce)2Si4O12CO3.H2O.	38			
Loparite	(Ce,La,Na,Ca,Sr)(Ti,Nb)O ₂	30			
Monazite-(Ce)	(Ce,La,Nd,Th)PO4	65			
Parisite-(Ce)	Ca(Ce,La) ₂ (CO ₃) ₃ F ₂ .	61			
Xenotime	YPO₄.	61			
Yttrocerite	(Ca,Ce,Y,La)F ₃ .nH ₂ O.	53			
Huanghoite-(Ce)	BaCe(CO ₃) ₂ F.	39			
Cebaite-(Ce)	Ba ₃ Ce ₂ (CO ₃) ₅ F ₂ .	32			
Florencite-(Ce)	CeAl ₃ (PO ₄) ₂ (OH) ₆ .	32			
Synchysite-(Ce)	Ca(Ce,LA)(CO ₃) ₂ F.	51			
Samarskite-(Y)	(Y,Ce,U,Fe ³⁺) ₃ (Nb,Ta,Ti) ₅ O ₁₆ .	24			
Knopite	(CaTi,Ce ₂)O ₃	na			

REE Minerals occur as: silicates, carbonates, oxides, phosphates...

Micro-XRF Analysis of Rare Earth Elements (REE's): Apatite – Low concentrations

Rare Earth Elements: Smithsonian Standard: Apatite Total REEs approx. 1.43 wt%

La203	Ce203	Pr203	Nd2O3	Sm203	EuO	Gd2O3	Tb2O3	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu203	Sum
0.509	0.655	0.000	0.165	0.073	0.000	0.081	0.000	0.001	0.000	0.001	0.000	0.008	0.000	1.493

Jarosewich, E., Gooley, R., and Husler, J. 1987. Chromium Augite – A new microprobe reference sample, Geostandards Newsletter, Vol. 11., No. 2, p197-198.

Micro-XRF Analysis of Rare Earth Elements (REE's): Phalaborwa - Apatite

Lanthanum	57	1089		
Cerium	58	2573		
Praseodymium	59	144		
Neodymium	60	1600		
Samarium	62	44		
Europium	63	228		
Gadolinium	64	10		
Terbium	65	0		
Dysprosium	66			
Holmium	67	54		
Erbium	68	0		
Thulium	69	0		
Ytterbium	70	0		
Lutetium	71	19		

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Micro-XRF Analysis of Rare Earth Elements (REE's): Chile - Granite with Allanite

Micro-XRF Analysis of Rare Earth Elements (REE's): Sample Types: Geology

Above: Loose Large Mineral Grains; Below: Cut Rock Sample Surface

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Micro-XRF Analysis of Rare Earth Elements (REE's): Sample Types: Industry

Electronics

High Index Glasses

SEM Image showing charging under 20 kV e-beam:

Summary and Conclusions: Critical Metals and Micro-XRF REE Quantification

- The analysis of Critical Metals is important for our transition to the Green Technology Future
- Good quantification necessitates carefully chosen measurement conditions: Filter selection for crystalline materials, Measurement time...
- Surface roughness impacts the precision of quantification
- Reference materials are required for highest accuracy: Commercial/in house/self-made
- Depending on desired accuracy, quantification of a Rare Earth Element may be calibrated based on another Rare Earth Element standard with similar cationic number
- Micro-XRF is a flexible technique that can analyze a variety of sample types

WEBINAR: MICRO-XRF - REE QUANTIFICATION

Micro-XRF Further Information

Search for: Micro-XRF or M4 TORNADO or M4 TORNADO PLUS

measurements to the object of interest, wherever it may be. Join us to learn about how ELIO is helping our partners in Art & Conservation to delve deeper and reveal new insights with their research.

analysis, having been present in many laboratories for more than a decade. The advantages of this technique were immediately recognized- micro-XRF

provides a unique ensemble that integrates the multielement sensitivity of XRF with detection down to trace element levels, large sample accessibility, and spatial resolution down to the micrometer range.

highly sophisticated mapping instruments

Bruker Nano Analytics + Followin

The Imilac Meteorite was discovered in the Atacama Desert (Chile) in 1822. It is

Bruker Nano Analytics - Following

The Imilac Meteorite - one of the largest stony-iron pallasites ever

Micro-XRF in counterfeit analysis: It is easy to hide technical details behind a veil of plastic and sometimes a new chip just isn't the same as the chip th

structing the history of a 17th Century Delftware Tile using mice

LinkedIn @BrukerNanoAnalytics

Search for: #Picofthemonth

© 2023 Bruker

BRUKER

MICRO-XRF SPECTROMETERS

XRF Mapping

More Information

For more information, please contact us:

info.bna@bruker.com

or

Christian.Hirschle@bruker.com

Andrew.Menzies@bruker.com

Innovation with Integrity

Innovation with Integrity