

Tracing craftsmanship: Analyzing archaeological objects and handcraft using micro-XRF analysis

Bruker Nano Analytics

Overview

- This webinar discusses the **analysis of three-dimensional objects**
- Beginning of 2025, we will dedicate a webinar to the analysis of porcelain and ceramics using micro-XRF
- Further next year, we will explore the analysis of manuscripts and written Heritage

Art & Conservation Webinar Series Analysis of non-infinite samples in Cultural Heritage

If you have questions during this webinar, please **type your questions**, thoughts, or comments in the **Q&A box** and **press Send**.

We ask for your understanding, if we do not have time to discuss all comments and questions within the session.

Any unanswered questions or comments will be answered and discussed by e-mail or in another WebEx session.

Art & Conservation Webinar Series **The Speakers**

 Application Scientist XMP specialized in Cultural Heritage Bruker Nano Analytics, Berlin, Germany

Dr. Roald Tagle

 Global Manager of Application Science, Bruker Nano Analytics, Berlin, Germany

What is micro-XRF?

What is micro-XRF? From XRF to micro-XRF

- Conventional X-ray fluorescence analysis (XRF) is an analytical tool for qualitative and quantitative material analysis. It performs ideally in a standardized workflow.
- XRF tells you which elements are in the sample and how much of each one.
- Usually a sample needs "preparation", including homogenization and/or dilution for matrix reduction.

The compositional variations in a sample may be a crucial property of the material

BRUKER

What is micro-XRF? **From XRF to micro-XRF**

Composition

Compositional variations

BRUKER NANO ANALYTICS' CULTURAL HERITAGE WEBINAR SERIES 2024 What is micro-XRF? Micro-XRF

- Micro-XRF is spatially resolved XRF.
 - \rightarrow Micro-XRF reveals where elements are.
 - \rightarrow Micro-XRF is ideal for non-homogeneous samples.
- It usually requires minimal or no sample preparation.
- Qualitative and semi-quantitative analysis is always possible
- Quantitative micro-XRF is feasible for sufficiently homogeneous areas of the sample, which can be even below 100 µm in diameter.
- The measurement conditions are very flexible in order to address different analytical tasks or requirements posed by the sample.

The challenge Highly-topographic Cultural Heritage objects

What types of objects are we talking about?

- Metals
- Porcelain and ceramics
- Glass

Decorated wooden or stone objects

Which research questions can be answered using XRF?

- Provenance (origin and dating)
- Composition
- Technology and production
- State of preservation and previous treatments

How can we get the information difficult to reach? A porcelain teacup

The finely painted flower motiv and gold decoration is located down to 4 cm deeper than the cups edge.

4 cm

Introducing the instrumentation

XRF, Art and Collections Management

ELIO mapping XRF

Flexibility of approach and positioning – ideal for different objects on-site and in the lab

Mesoamerican manuscripts, Bodleian Library Oxford *(see Grazia et al. 2019)*

M6 JETSTREAM large-area micro-XRF mapping

Museum- & labbased mapping solution

al

Zn

M4 TORNADO micro-XRF

Micro-XRF analysis An Introduction to Porcelain studies

Cu Mn Co Pb

P. 9/

Porcelain analysis Sample positioning

- Pigments
- Glaze
- Composition

Porcelain analysis **An Introduction**

- Pigments
 - Pitfalls: Non-infinitely thick
 - Qualitative analysis
 - Common questions:
 - > Colour components
 - ➤ Trace elements
 - > Additives
- Glaze
- Composition

Porcelain analysis **An Introduction**

Pigments

- Pitfalls: Non-infinitely thick
- Qualitative analysis
- Common questions:
 - Colour components
 - ➤ Trace elements
 - > Additives
- Glaze

Composition

BRUKER NANO ANALYTICS' CULTURAL HERITAGE WEBINAR SERIES 2024 Porcelain analysis An Introduction

- Pigments
 - Pitfalls: Non-infinitely thick
 - Qualitative analysis
 - Common questions:
 - Colour components
 - ➤ Trace elements
 - > Additives
- Glaze
- Composition

Zn K

Porcelain analysis **An Introduction**

- Pigments
- Glaze
 - Pitfalls: Non-infinitely thick
 - Qualitative analysis
 - Common questions:
 - Porcelain technology:e.g. hard or soft past
 - Composition and additives
 - Thickness determination
- Composition

24 Meissen

Porcelain analysis **An Introduction**

- Pigments
- Glaze
- Composition
 - Pitfalls: Non-glazed area of the body
 - Quantitative analysis
 - Vacuum is a plus as also light elements can be quantified without references
 - Relative abundancies can also be measured at air indicating provenance or standard-based approaches
 - Common questions:
 - Provenance studies

Yongzheng, 1730

Private collection, Lutz Miedtank.

Kangxi 1700-1720

Fe203

1.59

1.64

1.30

1.25

1.31

1.54

1.42

0.60

0.52

0.93

Qianlong 1760

Sévres Porcelain Manufacture Biscuit: Provenance studies

Unknown

MNC 2024.4.1

Limoges MNC 25341

Porcelain analysis **Tuning excitation conditions**

Unknown MNC 2024.4.1 cps/eV 1.00 * 2023 4 1 pate point 1.spx 4.0 18.96 * 2023 4 1 pate point 1 filter.spx 3.5 3.0 2.5 Zn 2.0 [‡]u Ga 1.5 1.0-0.5 0.0 10 12 20 14 16 18 keV

Using a strong filter to enhance peak-tobackground ratio for high-energy trace elements Extracting net intensities for ratio analysis

24

Porcelain analysis **Biscuit: Provenance studies**

© 2024 Bruker

 \succ

20

Mapping intricate three-dimensional objects **Do we need to keep a constant distance to the object's surface?**

Private collection, Lutz Miedtank.

- 1. Topography cannot be followed.
- 2. Danger for the object as well as the instrument due to crash.
- 3. Increase of measurement time due to task complexity.
- 4. Simpler data interpretation and visualization.

We use a different approach!

Introducing the AMS feature for measuring highly-topographic samples

Understanding your instrument Hardware geometry of excitation and detection

Dual detector technology ...as implemented in the M6 JETSTREAM

- Double detector technology with 2x60 mm² SDD (4x the detector area of the prototype)
 30 mm² → 60 mm² factor ~1.7 intensity improve
- High throughput technology to improve data acquisition rate over 300 kcps
- Better visualization of non-flat samples
- Patented Aperture management system for improved spatial resolution

Dual detector technology Shadow effects of a single SDD system

Single detector "looking" from the right

Double detector "looking" from both sides

M4 TORNADO: Dual detector technology **Benefits of choosing the point of view**

The polished edge of a ceramic sample placed vertically.

Choice of detector enables "cleaner" edges

M6 JETSTREAM: Lens divergency **Spot size and working distance**

Instrument has 5 configured working distances. Spot sizes between 100 μm and ${\sim}500~\mu m$ can be selected. Maximum spot size depends on lens.

The distance between one and the next configured spot size is ~ 3.2 mm. The WD can is defined by a sharp image in the high magnification camera at the respective camera position.

For our used lenses we can defined \sim 100 μm every 3 mm with out the AMS.

WD @ smallest configured spot size ~ 13 mm

WD @ largest configured spot size ~ 25 mm

M6 JETSTREAM: Calibrated working distances **Intensity variation on a glass sample**

Mapping highly topographic samples with high spatial resolution **Aperture Management System (AMS)**

Mapping highly topographic samples with high spatial resolution **Aperture Management System = Almost Monocapillary system (AMS)**

3 cm out of focal plane the spot size is reduced 1000 µm (without AMS) down to $< 700 \,\mu m$ (for AMS 1000) (for AMS 500) or even < 400 µm

Mapping highly topographic samples with high spatial resolution Aperture Management System = Almost Monocapillary system (AMS)

Aperture management – patented.

The AMS reduces the number of photons that reach the sample. The AMS 1000 (µm opening) reduces the intensity by a **factor of ~3**, the AMS 500 (µm opening) down by a **factor ~7**.

This effect is somehow cushioned by the increased solid angle of detection and signal processing capabilities of the 2x 60 mm² SDDs.

Using the AMS Maintaining a high spatial resolution across the entire surface

Standard setting

Using the AMS Maintaining a high spatial resolution across the entire surface

Standard setting

zoom

AMS 500 µm

44

50 kV, 200 μA, no AMS 300 μm pixel, 50 ms/px dwell time

50 kV, 200 μA, no AMS 300 μm pixel, 50 ms/px dwell time

50 kV, 600 μA, AMS 500 300 μm pixel, 100 ms/px dwell time

50 kV, 200 μA, no AMS 300 μm pixel, 50 ms/px dwell time

50 kV, 600 μA, AMS 500 300 μm pixel, 100 ms/px dwell time

c. 10 cm distance

c. 10 cm distance

Micro-XRF analysis An Introduction to quantification of metal objects

Kris Courtesy of Bartoschewitz Meteorite Collection

A meteoritic dagger Quantitative XRF analysis

Mass conc. (norm.))							
	Ar	Cr	Fe	Ni	Cu	As	Rh	Sum
high Ni 003	0.00	0.03	98.74	1.20	0.02	0.02	0.00	100.00
high Ni 002	0.00	0.03	98.84	1.09	0.02	0.02	0.00	100.00
high Ni 001	0.00	0.03	98.72	1.21	0.02	0.02	0.00	100.00
Mean value:	0.00	0.03	98.77	1.17	0.02	0.02	0.00	
Std dev.:	0.00	0.00	0.07	0.07	0.00	0.00	0.00	
Std dev. rel. [%]:	0.00	12.92	0.07	5.81	15.04	19.57	0.00	
Conf. interval:	0.00	0.00	0.04	0.04	0.00	0.00	0.00	

Micro-XRF analysis of archaeological objects and handcraft **Conclusion**

- Micro-XRF offers a vast variety of analyzing archaeological objects and handcraft.
 - Qualitative analysis or semi-quantitative analysis can be done in point as well as scanning mode.
 - Quantitative analysis is more intricate but can be done with standard-free FP or standard-supported.
- The AMS offers to map highly topographic objects with a high spatial resolution.
- Though there is a loss of intensity by both the AMS as well as a larger distance from sample surface to detector, we still get sufficient count rates for mid to high Z elements.

Art & Conservation Webinar Series Analysis of non-infinite samples in Cultural Heritage

If you have questions during this webinar, please **type your questions**, thoughts, or comments in the **Q&A box** and **press Send**.

We ask for your understanding, if we do not have time to discuss all comments and questions within the session.

Any unanswered questions or comments will be answered and discussed by e-mail or in another WebEx session.

Innovation with Integrity

Info.bna@bruker.com www.bruker.com/bna