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TIMScore empowers  
CCS-enabled  
peptide identifcation

Trapped ion mobility spectro- 
metry (TIMS) provides major 
advancements in proteomics, 
simultaneously providing sensi-
tivity, selectivity and speed to  
proteomics research. With each  
analyte measured, so is a colli-
sional cross section (CCS) value.  

A CCS value is an intrinsic  
property unique to each analyte  
that is highly reproducible across 
different instruments and labo-
ratories. TIMScore™ utilizes this 
CCS value in a database search 
algorithm boosting the number 
of peptide spectrum matches 
(PSMs), peptides and proteins  
identified in bottom-up proteomics  
measurements and is particularly 
sensitive toward phosphopeptide  
identification.

Challenge

One of the core challenges that 
exists in proteomics is converting  
complex LC-MS/MS datasets 
into tangible peptide spectrum 
matches (PSMs) and subse-
quently peptide identifications 
that can be used for protein  
inference, quantification, PTM 
analysis, and proteome sequence 
coverage within complex  
 



samples. Database search algorithms 
have extensively transformed bio-
logical and medical research yet, as  
instrumentation continues to become 
more sensitive, there remains room 
to improve these search algorithms.

In the simplest scenario database 
search algorithms rely on precursor  
and fragment ion spectra to be 
matched in-silico suggesting a best 
fit and assigning a probability score. 
In many instances the best fit of a par-
ticular PSM is of an equal probability  
score or just marginally better 
than the next best fit, yet a single  
assignment is delivered. Inferring only 
one PSM, which may be incorrect  
given the reliance purely on the 
information contained in a fragment 
ion spectra, can lead to increased 
false identifications and necessitate 

the need for stricter acceptance  
criteria such as lower false discovery 
rates, minimum increases in unique 
peptide counts, and more biological 
replicates. Incorporating CCS infor-
mation via TIMScore: 1) assigns 
more PSMs, peptides and proteins 
2) increases the confidence in the 
assignments 3) can be performed 
in real-time within PaSER™ 2022 to 
provide the most complete real-time 
feedback (Figure 1).

Solution

Machine Learning to Predict CCS

An essential component to TIMScore 
is defining the deviation between 
experimental and predicted CCS 
values. In order to accurately predict 
CCS values from a peptide’s primary 

amino acid sequence machine learning  
was used. A training dataset of hun-
dreds of thousands of tryptic and 
phosphorylated peptides was used, 
where the dataset included peptides 
of doubly, triply and quadruply charge 
states. A transformer model of peptide  
CCS was developed from this training  
set. The model was tested for accu-
racy against an independent dataset  
it had previously not seen. For doubly, 
triply and quadruply charged peptides 
the accuracy in predicting a peptide 
CCS from the primary amino acid 
sequence was 95% for tryptic pep-
tides and 92% for phosphorylated  
tryptic peptides, respectively (Figure 2). 
 
Applying the CCS-enabled Algorithm

With a CCS prediction model applicable  
to all tryptic and phosphorylated 

Figure 1: A CCS-enabled database search including TIMScore as an additional dimension. The trained machine learning model predicts the CCS values of  
tryptic and phosphorylated peptides. Experimental CCS is referenced against the predicted CCS to call the most probable assignment when a traditional 
search incorrectly, incompletely or is unable to assign a correct peptide match.
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peptides complete, TIMScore is 
deployed. Upon setting up the 
parameters file, in-silico peptide  
candidates are sent to the CCS  
prediction model to generate a pre-
dicted CCS value. The PaSER search  
algorithm is run as normal and the 
search algorithm compares the  
predicted and measured CCS values 
and calculates a correlation score, 
namely TIMScore for the top 5  
peptide candidates for each spectra 
(Figure 1). The true benefit of TIMScore  
can be realized during the peptide- 
validation and False Discovery 
Rate (FDR) estimation steps of the  
proteomics pipeline. In a non CCS 
enabled algorithm, only two dimen-
sions can be utilized to estimate 
the FDR rate, and so a discriminate 
line is fit to a 1% error (Figure 3A) to  
distinguish forward and reverse pep-
tide candidates. With TIMScore,  
and the extra CCS dimension, the 
peptide-candidates can be vectorized 
in 3-dimensions (Figure 3B) allowing 
a discriminate contoured plane to 
be applied to achieve the same 1% 
error. Applying a discriminate plane 
provides increased accuracy and  

precision, helping to validate formerly 
poorly scoring PSMs in the standard 
two dimensions. Thus, the key effect 
of TIMScore is derived from the  
additional dimension of CCS and that 
it provides in assigning true positives 
from decoy peptide sequences as 
shown in Figure 3. TIMScore works 
in a bidirectional fashion, boosting 
the confidence of borderline peptides 
under strict FDR thresholds while 
simultaneously lowering the prob-
ability score of a peptide candidate 
such that it falls below the level of  
detection. Additionally, the probability  
score differentiates ambiguous 
PSMs where the traditional search 
score cannot distinguish between 
the 1st and 2nd (or more) best  
candidates.

Results

As a demonstration of the real-world 
application we present a previously 
published dataset analyzed with and 
without TIMScore for PSM, peptide 
and protein identification, as well as 
PTM localization.

TIMScore increases Proteins, 
Peptides, PSMs and Sequence 
Coverage

The published data set from the  
laboratory of Prof. Yasushi Ishihama 
titled “Effect of Phosphorylation on 
the Collision Cross Sections of Peptide 
Ions in Ion Mobility Spectrometry”  
was accessed from jPOST repository 
with the identifier PXD019746 [Ogata 
2021]. In the paper, they systematically  
characterize the CCS values of 4433 
pairs of mono-phosphopeptide and 
their corresponding unphosphorylated  
peptide ions using the timsTOF Pro. 
Interestingly, within this dataset one 
third of the enriched phosphopeptide  
pool was purposely dephosphory-
lated, further challenging the TIMScore  
CCS prediction model. We ana-
lyzed this dataset with and without  
TIMScore on the PaSER platform and 
also compared this to the published  
results which used an alternative 
search engine. Within Figure 4, 
we describe the number of PSMs,  
peptides, and proteins (Figure 4A&C)  
with, and without TIMScore. The use  
of TIMScore adds more than 110,000 
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Figure 2: Scatter plots of the predicted ion mobility (CCS) values from the machine learned model and the experimentally derived values for A  tryptic and 
B  phosphorylated peptides.



PSMs and doubles the number of 
peptides observed from 42,930 
to 98,949. The >98,000 peptides 
observed for this dataset is a 3.5 
times increase compared to what 
was initially published (Figure 4B). 
Interestingly, TIMScore does boost 
the number of proteins identified 
(Figure 4C), however, the biggest  

contribution comes in a significant 
boost to protein sequence coverage.  
This helps provide quantitative accu-
racy and more expansive libraries for 
label free quantitation (LFQ), data 
independent acquisition (DIA) and 
parallel reaction monitoring (PRM) 
experiments. In these data the 
number of peptides identified per 

protein group was 15, 7.5 and 5.5 
using TIMScore, without TIMScore 
or published data set, respectively. 
The addition of nearly 10 peptides by  
TIMScore per protein observed is  
currently being tested to the 
extended applications of dia-PASEF®  
and prm-PASEF®.

Figure 3:  A  2D plot representing XCorr and DeltaCN. Red dots represent decoy peptides, and the blue dots represent matched sequences. XCorr is a  
cross correlation between experimental and predicted fragment ion spectra and whereas DeltaCN is a measure of specificity, describing how much better  
the assigned fit is as compared to the next best fit. To determine false discovery rate (FDR), a line is fit on the 2D plot that separates forward and reverse  
peptides with 1% error.  B  A 3-dimensional box plot representing XCorr, DeltaCN and TIMScore and C  a counter-clockwise 90-degree rotation around  
the y-axis. TIMScore on the z-axis is the correlation between experimental and predicted CCS. To determine FDR with the addition of TIMScore, we  
visualize a contoured plane that separates forward and reverse sequences with 1% error. This allows for much more precise and accurate validation of 
peptide-spectrum matches.

Figure 4:  A  Bar graph of the number of identified peptide-spectrum-matches in PaSER 2022 using the ProluCID engine with and without TIMScore and the 
CCS dimension, TIMScore identifies an additional >100,000 PSMs. Venn diagrams displaying B  all peptide sequences and C  protein groups identified. All 
results are from the published dataset PXD019746 as processed and presented without TIMScore, with TIMScore and as in the published research article. 
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TIMScore increases Phosphopeptide 
Identification and Phosphosite 
Localization

Having been trained on phospho- 
peptide data, TIMScore increases the  
sensititivity to detect phosphorylated  
peptides. In Figure 5A and B we 
demonstrate that TIMScore improves 
the number of both phosphorylated 
PSMs and peptides identified by on 
average 61% in the current dataset.  
Important in post translationally  
modified (PTM) proteins, or the 
epiproteome, is the ability to localize  
the site of the modification. Site locali- 
zation can be difficult depending  
on the PTM present because of the 
lability of the PTM, or its preferential  
dissociation. Upon dissociation 

phosphopeptides often display a 
neutral loss, or the loss of the phos-
phate group with little backbone  
bond fragmentation which provides a 
deterministic location of the phospho 
group. Tools to assess the number and 
accuracy of site localization have been 
developed over the past 30 years,  
one such tool that generates a false 
localization rate (FLR) is LuciPHOr 
[Fermin 2013]. The FLR is the percent 
confidence interval of correct assign-
ment of phosphorylated peptides.  
We applied LuciPHOr at a FLR of 
both 5% and the most stringent 1% 
intervals to the global phosphope-
tide PSMs and peptides identified  
(Table 1). Consistent with the 
increased sensitivity TIMScore 
provides, an improvement of 57% 

(10,854 PSMs) in the number of 
localized phosphopeptide sites was 
observed at the 5% FLR cutoff. 
These percent improvements using 
TIMScore held consistent (57-62%) 
across both PSMs and peptides at 
both the 5% and 1% FLR settings. As 
in the publication, we also examined  
the number of phosphorylated 
peptides and their corresponding 
unphosphorylated peptide pairs 
as well as peptide ion pairs. In this  
analysis as well, TIMScore provided 
>55% increase compared to standard  
method (Table 1).

Conclusion

TIMScore on PaSER: 

• Boosts the number of 
proteins, peptides and 
PSMs in complex datasets

• Increases protein sequence 
coverage substantially

• Provides an additional 
dimension for more precise 
and accurate peptide 
assignments

• Expands capabilities for 
library-based approaches in 
quantitative proteomics

PSM Peptides Unique 
Peptide 

Pairs

Unique 
Peptide 
Ion Pairs

Total 5% FLR 1% FLR Total 5% FLR 1% FLR

Without 
TIMScore

42,427 33,065 27,095 8570 6594 5188 6038 8542

With  
TIMScore

63,823 43,919 35,638 13,993 8996 6939 9399 13,996

% GAIN 60% 57% 57% 62% 58% 57% 56% 64%

Table 1: Phosphorylated PSM and Peptide identifications with and without TIMScore and as filtered 
using a Phosphorylation False Localization Rate (FLR) of 5% and 1%. Unique peptide pairs are 
phosphorylated peptides and their corresponding unphosphorylated peptide. Unique peptide ion pairs 
are one or more phosphorylated peptides (or multi-phosphorylated) peptide and their corresponding 
unphosphorylated peptide sequence.

Figure 5: Bar charts of  A  Phosphorylated PSMs in PaSER 2022 using the ProLuCID search engine with and without TIMScore enabled.  B  Phosphorylated 
peptides identified using the ProLuCID search engine with and without TIMScore enabled. Phosphorylated PSM and Peptide sequences were further filtered 
applying a False Localization Rate (FLR) using LuciPHOr [Fermin et al. 2013] where even at the strictest FLR (1%) TIMScore identifies 57% more phosphorylated 
PSMs and Peptides.
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