
The high sensitivity of nanoindentation and atomic force microscopy allows for the 
assessment of subtle displacements down to the sub-nanometer regime, enabling non-
destructive testing of mechanical properties (such as mechanical moduli) at the elastic 
response limit. For the small indentation depths relevant in most nanomechanical testing 
scenarios, the Hertzian model assumption of a flat sample plane for the tip-sample 
interaction is not applicable, leading to inaccurate modulus amplitude calculations if surface 
roughness is ignored during the analysis. This application note addresses the real-life 
situation of non-flat surface conditions in a monolithic metallic glass¹ and how to correct for 
curvature-induced effects on the indentation modulus by using an equivalent radius. In doing 
so, an elastic microstructure is revealed in the metallic glass despite the existence of only 
a single amorphous phase, demonstrating the ability of nanoindentation and atomic force 
microscopy to access materials properties that remain hidden to other methods. 

Nanoindentation at the Elastic Response Limit:
Revealing Elastic Microstructures in a Monolithic Glass

Application Note  

#1547

a

b dc

FIGURE 1

(a) Representative examples of load-displacement curves measured on a 
bulk metallic glass surface within the elastic response limit. (b) Mechanical 
modulus deduced from curves in (a) by the Oliver-Pharr method. 
(c) Topography measured for the same region on the sample surface as 
shown in (b). (d) Mechanical modulus for the corresponding area after 
correcting for topography-induced effects. 

 



Mechanical Mapping

Spatially resolved nanomechanical measurements were conducted using a Hysitron 
TI 980 TriboIndenter® with a cono-spherical tip of 890 nm. A well-polished surface of 
a bulk metallic glass was characterized using accelerated property mapping (XPM™)² 
over a lateral range of 2.5 µm × 2.5 µm by probing mechanical modulus (Figure 1b) and 
topography (Figure 1c). Representative curves of local load-displacement (measured at 
50 nm indentation distance) are displayed in Figure 1a.

Topography Correction

Although height variations over the width of a single indent may only be in the single 
nanometer regime, the indentation depth is of the same order of magnitude, resulting in 
a distinct correlation between modulus and topography.¹,³ To account for such curvature-
induced effects on the elastic modulus, an equivalent radius is determined for each point 
of the mapped area.4 Hence, the local curvature of the measured surface is considered as 
the inverse of the pair of independent local surface radii, i.e., radii of curvature, (Rs

x , Rs
y).

Together with the tip radius, Rtip, these are the basis for determining the equivalent radius, 
Req=√Rx Ry  by                  , resulting in Equation 1.

The independent equivalent radii, (Rx,Ry), behave as visualized in Figure 2. They are smaller 
than the tip radius if the local surface curvature is positive (e.g., at a local maximum on 
the surface), equal to the tip radius if the curvature is zero (where the sample surface is 
flat, i.e., with constant slope), and larger than the tip radius if the curvature is negative. As 
a special case, the equivalent radii approach infinity towards curvatures of -1/Rtip. Here, 
surface dips with curvatures below that limit lead to multiple contacts between tip and 
sample surface, effectively resulting in measured curvatures equal to -1/Rtip that do not 
reflect the true curvature (<-1/Rtip) of the surface.

Results

To determine the equivalent radius from measured topography data, the independent radii of 
curvature, (Rs

x , Rs
y), are related to the Gaussian and mean curvature, Ks and Hs.1,4

These are defined by first and second derivatives of the surface topography and can be 
assessed by a point-wise analysis of the data.

Based on the equivalent radius, the corrected elastic modulus, Ec, is calculated from the 
measured modulus, Er, and the tip radius, by assuming Hertzian contact mechanics via  
                 , as plotted in Figure 1d.
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Equation 3:
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Equation 2:
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Conclusions

High-throughput, spatially resolved nanoindentation can reveal nanoelastic fluctuations 
in single-phase solids, as demonstrated here for a monolithic glass. Such high-resolution 
measurements are very sensitive to long-wavelength topography modulations with 
amplitudes of only a few nanometers. A method described in References 1 and 4 yields a 
significant reduction of the influence of topography-related effects on the elastic modulus. 
Scenarios connected to imaginary solutions for the equivalent radius are avoided when using 
the same tip for topography and modulus measurements. Diverging values of the equivalent 
radius are expected at sites where the radii of curvature approach the negative tip radius.
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FIGURE 2

Equivalent radius and 
radius of curvature as 
a function of curvature 
with schematic 
representations of the 
interplay between surface 
curvature and tip.

 


