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Dried blood spot microsampling:
A semi-quantitative 4D-Lipidomics approach
MetaboScape for enhanced lipid profiling.

Lipid profiling from biofluids, such as plasma or serum, derived from ph
investigated extensively. The use of dried blood spot (DBS) microsampli
popularity due to its minimal invasiveness and potential for self-samplin
possibility of outside the clinic sampling and also high-frequency metab
can cater to large-scale population-wide research.

Abstract

Here, we demonstrated the potential use of DBS microsampling for 4D-Lipidomics™ profiling
using timsTOF Pro with VIP-HESI. By leveraging real-time data quality monitoring during
acquisition, potential issues can be promptly identified and addressed, ensuring optimal data
collection. Lipid identification using MetaboScape®'s rule-based annotation complemented by
Kendrick mass defect plot enhanced confidence in annotation. Additionally, the incorporation of
internal standards allowed for semi-quantification of measured lipids within a single acquisition,
providing a deeper understanding of lipid concentration variations across different individuals.

Introduction

Dried blood spot microsampling (DBS) is slowly gaining traction in clinical settings as a
minimally invasive alternative to venipuncture, using a simple fingerprick and disposable lancet
to deposit blood droplets onto a paper substrate. Compared to traditional venous phlebotomy,
which is invasive and requires trained personnel, microsampling is self-administrable, and

has since been adapted for analyzing diverse biological matrices, including plasma, saliva,
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urine, and breast milk [1]. While this technigue has been employed in routine measurement

of targeted metabolites, with the most well-known application being newborn screening for
phenylketonuria, DBS could be extended to other biomarkers of metabolic health such as
lipids. Lipids are among the most functionally versatile, structurally diverse, and physiologically
complex biomolecules. They are increasingly recognized for their role in chronic disease
development due to their involvement in energy storage, cell signaling, enzyme regulation, and
the maintenance of homeostasis [2].

Mass spectrometry (MS)-based workflows have been extensively employed in the field

of lipidomics to characterise lipid profiles and understand biological functions in biofluids.
Advancements in high-resolution MS instruments together with Trapped lon Mobility
Spectrometry (TIMS-HRMS) has enabled these in-depth studies to be carried out with minute
samples volumes (<10 pL) or even from single cells [3]. The complexity of the lipidome in
biological samples is exemplified by a myriad of isobaric lipids, which LC-TIMS-HRMS provides
another analytical dimension (“4D") for the elucidation of isobaric compounds based on their
structural configuration which is not possible by traditional LC-MS methods.

Herein, we describe a 4D-Lipidomics workflow to evaluate the applicability of in-depth analysis
of the whole blood lipidome collected on a DBS substrate, together with MetaboScape 2025 for
successful identification and quantitation of these lipids using a microsampling approach.

Methods

Briefly, 10 pL of capillary blood was sampled from healthy control and diabetic individuals

(n =17 participants in each group) using a commercial microsampling device (Capitainer®, Solna,
Sweden)[4]. The DBS samples were extracted with 150 pl of 80% IPA containing quantitative
labeled internal standards (Avanti EquiSPLASH LIPIDOMIX; 1 pg/mL), before undergoing

a 10 min vortex mix, 5 min sonication, 20 min protein precipitation at -20°C, and 10 min
centrifugation at 14,000 x g (4°C). 4D UHPLC-TIMS-HRMS analysis was performed across

two ionization modes: positive vacuum insulated probe heated electrospray ionization mode
(VIP-HESI+) and negative mode (VIP-HESI-). Pooled quality control (PQC) samples were created
by combining the DBS extracts to avoid adsorption issues from extracting multiple DBS.

UHPLC-TIMS-HRMS analyses were conducted as described in Table 1 using a UHPLC
connected to a timsTOF Pro system equipped with a VIP-HESI source. Real-time data quality
monitoring during acquisition was performed using TASQ® 2025 (Bruker) with real-time quality
control (RTQC).

The resulting data was processed with MetaboScape 2025 for non-targeted profiling using
T-ReX® 4D algorithm where MetaboScape combines common adducts and isotopes belonging
to the same compound into unique features in the feature table. Processed positive and
negative mode data were merged into a single feature table for annotation using the rule-based
lipid annotation based on the Lipidomics Standards Initiative guidelines [5] and measured CCS
of lipid species were matched with the prediction by CCS-Predict Pro. Finally, the annotated lipids
were also semi-quantitated with spiked internal standards (ISTD) using MetaboScape 2025.

Results and Discussions

Data quality checks

Data quality in global lipidomic profiling is crucial for biomarker discovery and systems biology
studies. However, data quality is frequently checked only after the whole sample set is acquired.
This could lead to the loss of precious samples if an issue occurred during the acquisition
process.

Herein, we utilise “RealTime QC" (RTQC) to monitor the acquisition process in real-time.
Briefly, a processing method using Target Analysis for Screening and Quantitation software
(TASQ) is applied to target compounds of interest, such as ISTD or endogenous metabolites.
These compounds are then automatically monitored after every run and plotted in RTQC for ease



Table 1. MS acquisition parameters in both positive and negative

ionization.

MsS

Source

timsTOF Pro
VIP-HESI source
End Plate Offset
Capillary
Nebulizer

Dry Gas

Dry Temp

Probe Gas Temp
Probe Gas Flow

Acquisition mode TIMS-PASEF

lonization

Tims parameters

Positive and Negative
Ramp time

Mobility range

ICC Target Intensity

500V

4500V

2.0 bar

8.0 L/min

230°C

400°C (+), 450°C (-)
4.0 L/min

100 ms
0.55-1.90 1/K,
5.0M

Table 2. LC parameters

LC Waters Acquity
Column Waters BEH C18 (100 x 2.1 mm, 1.7 ym)
g(\)lleuanl;mp. 60°C
Mobile A: Water/acetonitrile/isopropanol (50/30/20)
phase + 10 mM ammonium acetate
B: Water/acetonitrile/isopropanol (1/9/90)
+ 10 mM ammonium acetate
Pump Seal wash 'fg?"/’g%”f' fwater
Gradient Time [min] Flow [ml/min] %B
0.0 0.40 10
27 0.40 45
2.8 0.40 58
8 0.40 60
8.1 0.40 80
1.5 0.40 80
12 0.40 100
13 0.40 10
15 0.40 10
Autosampler Temperature 8°C
Injection volume 5 pl

Wash solvent A
\Wash solvent B

IPA / water (10% / 90%)
Isopropanol (100%)

Transfer Scan range 100 - 1350 m/z
parameters Funnel 1 RF 250 Vpp
Funnel 2 RF 200 Vpp
Multipole RF 200 Vpp
Collision Energy 10eV
Collision RF 450V
Quadrupole Low mass 60 m/z
Transfer Time 50 us
Pre Pulse Storage 3 us
MS/MS Collision Energy 20 -50 eV
Automatic internal mass calibration using
Calibration sodium formate and Agilent ESI-L low

concentration Tunemix
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Figure 1. Real-time QC visualization of the whole dataset.

In this exemplar using ISTD 18:1(d7)-LPC, a sample was highlighted (in red) with the missing ISTD, which was later identified due to issues during the

sample extraction process.



of visualization (Figure 1). Plots such as intensity, and differences between measured and
exact values—such as mass-to-charge (Am/z), retention time (ART), and CCS (A1/K)—can be
customized to display the required information. Outliers within the runs are also automatically
highlighted in RTQC (i.e. 18:1(d7)-LPC) to indicate samples or instrument issues for further
intervention by the user.

Lipid annotation

Lipid species were annotated with MetaboScape's rule-based annotation using precursor m/z,
isotopic pattern, characteristic MS/MS spectra and measured CCS as an additional quantifier
based on MetaboScape's CCS-Predict Pro. Specifically, the target list spans 4 lipid classes
including glycerolipids, glycerophospholipids, sphingolipids, and sterol lipids, across

25 subclasses.

A merged 4D-Kendrick mass defect (KMD) plot was used to visualize the lipid distribution of
combined positive and negative ionization datasets. KMD is based on the diagnostic structure
feature of the lipid fatty acyl chains (CH,) to organize structurally related lipid subclasses. Further
curation of lipid outliers were also readily identified using the outlier function in MetaboScape
where annotated lipid outliers based on CCS or RT were highlighted in the KMD plot. A total of
357 unique lipids were annotated in DBS, shown in Figure 2.
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Figure 2. Merged KMD plot of DBS lipids detected in both positive and negative ionization.
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Figure 3. Semi-quantitation of lipids
L using internal standards (A).
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Semi-quantitation of lipids in advanced microsamples

The concentrations of measured lipids can be calculated in MetaboScape using a single-point
internal standard (ISTD) as a surrogate based on their lipid subclasses as shown in Figure 3. A
target list containing the ISTD information such as retention time, molecular formula, working
concentration and the compound class was created (Figure 3A). This target list was then used

to annotate the Feature Table and the annotated ISTDs are shown with a “T" symbol in the
‘Annotation’ column (Figure 3B). When an annotated lipid (i.e. PC 36:3) has the same compound
class as the ISTD (PC 33:1-d7; Figure 3B - red box), the concentration will be calculated based on
the following formula: (peak area (measured)/ peak area (ISTD)) x concentration (ISTD). For lipids
that do not have a corresponding ISTD, no concentration is reported (Figure 3B — yellow box).

Here in Figure 4, a t-test was employed and visualized using a volcano plot to identify lipid
features that are different (p-value < 0.05, fold change >1.5) between the two groups. A series
plot within MetaboScape can also be used to quickly visualize the trajectory of lipid species
across sample cohorts. Figure 4B demonstrates how some of the annotated lipid species
measured in DBS are changing between non-diabetic and diabetic patient controls.

A lower level of lysophosphatidylcholine (LPC) species were observed in DBS from diabetic patients
compared to control subjects. Meanwhile, a higher amount of triacylglycerols (TG) are observed
in diabetics compared to controls. These lipid concentrations were further quantitated using

its respective ISTD, shown in Table 3. These observations are also similarly reported in another
paper suggesting that LPC and TG changes are correlated to obesity-related factors such as diet
and adiposity [6] as many of these lipids play important signaling roles with diverse biological
function and are involved in regulating cellular proliferation, tumor cell invasion and inflammation.
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Figure 4. Statistical analysis in MetaboScape showing lipid variations between control and diabetic individuals.

@A volcano plot illustrating the lipid abundance between two groups. Lipids that are less abundant in the control group are shown
on the left (red), while those less abundant in diabetics are displayed on the right (blue). Series plot showing increases of TG and
decreases of LPC, based on relative intensities, between controls and diabetic individuals.



Table 3. DBS lipid concentrations in control and diabetic individuals (n=17). Lipids
were quantified using its respective spiked ISTD. Lipids shown have a p-value <0.05.

Lipid Species Control (uM) Diabetic (uM)
LPC 14:0 0.99+0.35 0.77 £0.24
LPC 16:0 58.15 + 8.65 43.65 +9.13
LPC 18:0 25.84 + 8.37 17.07 + 4.39
LPC 18:1 1543 +4.34 11.02 +3.74
LPC18:2 18.84 +5.98 13.28 +4.97
LPC 20:0 0.20 £ 0.05 0.15 + 0.04
LPC 20:1 0.27 £ 0.09 0.20 £ 0.07
LPC 20:2 0.18 £ 0.06 0.11 £ 0.04
LPC 20:3 1.21£043 0.87 £ 0.32
TG 52:2 57.09 + 56.29 142.39 + 95.64
TG 54:3 16.21 + 14.12 43.09 + 31.47
TG 56:3 1.14 +1.08 3.68+2.75

In-depth analysis of lipids from dried blood spots using a complete 4D-Lipidomics workflow with
timsTOF Pro, RealTime QC and MetaboScape 2025 from sample acquisition, quality checks during
data acquisition to lipids identification and quantification respectively.

Real-time monitoring of data acquisition using RealTime QC provides at-a-glance data visualization
of selected analytes. Outliers are automatically highlighted for informed decision-making during the
experiment.

4D-Kendrick mass defect plots, together with MetaboScape RT and CCS outlier detection, offers
quick visualization and curation of lipid species for higher-confidence annotation.

Out of the 357 rule-based annotated lipids, 222 lipids were quantitated in DBS based on internal
standard normalization of identical lipid class in MetaboScape 2025.
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