

Confident metabolite annotation in the absence of reference CCS and MS/MS data

Trapped Ion Mobility Spectrometry (TIMS) enables accurate measurement of metabolite Collisional Cross Section (CCS). These CCS values are a core component of the 4D-Metabolomics[™] workflow, providing confidence in compound annotation that augments the accurate mass, isotopic pattern fit, retention time, and MS/MS data routinely generated in high resolution mass spectrometry workflows.

Challenge

MS/MS spectral libraries and CCS repositories are being generated and shared at a rapid rate, including the Unified CCS Compendium [1] which houses >3800 values from traceable reference standards.

Still, many MS/MS libraries used for large-scale annotations in metabolomics and other small molecule research areas lack reference CCS values. Additionally, for many compounds, reference MS/MS spectra are not available and hence cannot serve as input for automatic annotation routines in non-targeted metabolomics applications.

Solution

CCS-Predict Pro

The new extended Spectral Library annotation workflow in MetaboScape[®] addresses lacking of CCS reference values by extending MS/MS spectral libraries with predicted CCS values. These are generated on-the-fly using the machine learning-based prediction model CCSPredict Pro, resulting in highly accurate predicted CCS values. Target List annotation in MetaboScape combines this new functionality with MetFrag *in-silico* fragmentation [2, 3] routines to enhance metabolite annotation confidence in the absence of MS/MS reference data. Any Target List containing the common InChI identifier for chemical substances is readily made into a searchable CCS library by the CCSPredict Pro model. Simultaneously, MetaboScape performs automatic MS/MS matching based on the InChI encoded structures using the MetFrag algorithm. Together, these data allow users to leverage the value of CCS measurement and MS/MS fragmentation without restriction or dependence on their availability in data repositories.

MetaboScape provides CCS-enabled annotation confidence

CCS-enabled profiling workflows provide higher confidence for compound annotation even if reference CCS values and / or MS/MS spectra are not available. On-the-fly structure-based CCS prediction and *in-silico* MS/MS fragment matching can substantiate annotations before purchasing or synthesizing reference standards for final validation of compound IDs.

CCSPredict workflow in MetaboScape turns any MS/MS spectral library with structure information into a CCS-enabled library

information from CCSPredict Pro predictions

-0.1

CCS-enabled spectral library annotation of human urine data acquired by 4D-Metabolomics

Automated Annotation Qualtiy (AQ) and AQ Details reporting:		123	1 2 3 4 5 1 m/z value fit 2 Retention time 3 Isotopic pattern fit 4 MS/MS fit 5 CCS value fit					Assessment Server ADM Indexes SP 2011 Monte In Re- Processment In Re- Re- Re- Re- Re- Re- Re- Re- Re- Re-	k M5M5 ann 423 74.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80
Name	Annotations	AQ 🔻	Annotation Source	AQ Details	MS/MS score	ΔCCS [%]	Cocares U-Opherylpropare U- 2-Mallylbalanti control 4 U-Barlylbalanti control 4	1 0x4er 407 20214045 2x4	954 (84) 983 694
1,3-Dimethyluric acid	SL		Bruker NIST 2020 MSMS	ila 🔍	912.4	0.4	La Par Epitatodenne provenia U Operativoren en provenia 2 Many - Spychol	Budar WD 200 M000 July Budar WD 200 M000 July Budar WD 200 M005 July Budar WD 200 M005 July Budar WD 200 M005 July	55. 550 550 750
Hippuric acid	SL		Bruker NIST 2020 MSMS	վեր 🔍	982.2	-0.8	Ag-Jap (2 Obselar) in given. 9-Conservicy/pros 7 Meth/games	111 Budar 407 200 MSH 34 8 121 Budar 407 200 MSH 34 8	60) 960 860 870
Verapamil	SL		Bruker NIST 2020 MSMS	վեր 🔍	987.7	-0.1	U-Denebylute and The Index D-carbourk and Quinefee 2.6-dad Feesthemic Acid	Budar 407 2011 Minit Jul R.	90/ 87/ 87/ 87/
Phenylacetyl-L-glutamine	SL		Bruker NIST 2020 MSMS	da 🔍	958.5	-1.8	Des Landra Lograp. Zamin nid Mugha Aydrograph. 1 Addapt Scholarstena.	Buder V07 200 M045 L	10 50 50 50
Paraxanthine	SL	§	Bruker NIST 2020 MSMS	ilia 🔍	983.2	-1.3	N-2 Aydexyetry/Searce	Index W07 2001 M0x5 Au	853 764 883 883
Kynurenic acid	SL		Bruker NIST 2020 MSMS	վետ 🅦	744.5	-1.3	DubricyLandine 1. Anderschaptenet 3. Patrickey 2. Studies/Lon. 1. Hausticsmit/2. actual: 2. Studies/Linux 4.	Buder VET 201 Million - A - Buder VET 201 Million - Buder VE	61. 61. 61.
Uric acid	SL		Bruker NIST 2020 MSMS		825.5	0.8	Faining-bacage/cleange.	1 Budar: VC2 2011 MSH1 3.4 Budar: VC2 2011 MSH1 3.4 <t< td=""><td>67. 865 855 855 855</td></t<>	67. 865 855 855 855
L-Histidine	SL		Bruker NIST 2020 MSMS	վեր 🔍	970.2	-0.8	V Audy C comoire Dis and Website Report and L Histoire	Budar VET 2021 Millet 2	903 655 907 802 955

Validation of spiked-in Verapamil

libraries

without CCS references

Human urine samples were measured with LC-TIMS-PASEF MS/MS using a timsTOF Pro 2 MS instrument. Metabolite annotation was performed in MetaboScape using the NIST 2020 MS/MS library. Forty unique annotations fit the criteria for maximum annotation confidence based on mass accuracy (mass dev. <2 ppm), isotope pattern (mSigma <20), MS/MS spectra (MS/MS score > 900) and predicted CCS value (CCS deviations measured vs. prediction <2%) matching.

CCS-based annotation quality scores were automatically calculated within MetaboScape and predicted values were clearly labelled in the Annotation Quality (AQ) Details column. To validate the workflow, the annotation of spiked-in Verapamil was confirmed with both reference retention times and CCS values.

MetaboScape's structure-based CCS prediction and in-silico fragmentation

Compound annotations enhanced with CCS predictions and *in-silico* MS/MS fragmentation

ΔO

ЯШ

AQ Details

11 (6)

Structure based annotation of human plasma data acquired by 4D-Metabolomics

Annotation Quality scores featuring CCS prediction and *in-silico* fragmentation

								2 III				1	
	m/z meas.	∆m/z [ppm]	RT [min]	mSigma	MS/MS score	CCS (Å ²)	ΔCCS [%]	Name	Molecular Formula	Annotations 🚽	AQ -	AQ Detai	
16	144.10187	-0.267	1.39	9.5	1000.0	127.2	-0.9	Proline betaine	C7H13NO2	11 51	3 III	F .	
17	197.12846	-0.208	6.23	1.3	845.7	144.1	0.7	Fasoracetam	C10H16N2O2		3 III	F 🔍	
18	181.07207	0.398	5.73	9.6	952.3	134.1	-1.2	Paraxanthine	C7H8N4O2	11 (51)	£ 111	F .	
19	246.16981	-0.356	6.52	9.6	851.0	161.0	1.2	2-Methylbutyroylcarnitine	C12H23NO4	TL (SI)	3 III	F 🔍	
20	282.11948	-0.335	2.09	8.6	938.8	164.7	1.8	N6-Methyladenosine	C11H15N5O4	II (SI)	3 III	F.	
21	134.05991	-0.956	6.17	16.1	966.0	124.0	0.5	Isoindolin-1-one	C ₈ H ₇ NO	11 50	3 III	F	
22	732.55343	-0.255	16.44	15.9	978.3	280.4	-0.8	PC(16:0/16:1(9Z))	C40H78NO8P	11 50	3 111	F 🔍	
23	303.23165	-0.666	14.46	18.3	979.3	179.5	1.6	14(R)-Hydroxy-retro-vitamin A	C20H30O2	11 51	8	F .	
24	301.21596	-0.771	12.65	5.4	849.7	180.7	1.8	9-cis-Retinoic acid	C20H28O2	II (SI)	3 III	F 🔍	
25	269.12468	0.922	1.55	18.0	909.1	160.1	0.5	Pentostatin	C11H16N4O4		\$ III	F .	
26	311.12348	-0.901	5.14	2.0	992.6	172.2	0.1	gamma-Glutamyltyrosine	C14H18N2O6	TL SI	2 HH	F 🔍	

A human plasma (NIST SRM 1950) 4D-Metabolomics data set was annotated with a Target List of compounds reported to be present in blood products (derived from HMDB 5.0 [4]). This enabled the **annotation** of >50 metabolites **based on structural information alone** (10 shown) with high scoring: <1ppm precursor mass, <20 mSigma, >800 MetFrag MS/MS score, <2% CCS vs. prediction. Annotation Quality scoring gives direct feedback on the quality identification results – at a glimpse!

The example selected above shows the annotation of gamma-Glutamyltyrosine with a **MetFrag MS/MS score of 992** (max. 1000) and a **delta CCS vs. prediction 0.3%**. Visualization of MetFrag *in-silico* generated fragment structures matching measured MS/MS peaks (left) as well as CCS prediction and mobilogram plots (right) facilitate data evaluation to substantiate annotation confidence.

MetaboScape provides CCS-enabled annotation confidence

- Novel workflows using the machine learning model CCSPredict Pro unlock higher annotation confidence.
- Automated CCS prediction for MS/MS spectral library annotations provides CCS-enabled annotation of any user-created or publicly available MS/MS library.
- CCSPredict Pro combined with MetFrag *in-silico* fragmentation routines enhance metabolite annotation confidence in the absence of reference CCS and MS/MS data.

The Bruker timsTOF Pro's combination of high scanning speed and the ability to generate CCS values is a unique combination, which can significantly improve our capabilities in high-throughput metabolomics.

Dr. Zheng-Jiang Zhu, Principal Investigator and Director of Metabolomics Research Center of Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences

References

- [1] https://doi.org/10.1039/C8SC04396E
- [2] https://doi.org/10.1186/1471-2105-11-148
- [3] https://doi.org/10.1186/s13321-016-0115-9
- [4] https://hmdb.ca/

For Research Use Only. Not for use in clinical diagnostic procedures.

Bruker Switzerland AG

Fällanden · Switzerland Phone +41 44 825 91 11

Bruker Scientific LLC

Billerica, MA · USA Phone +1 (978) 663-3660

