Predicting Lymph Node Metastasis in Endometrial Cancer by multi-modal mass spectrometry imaging Parul Mittal¹; Mark R Condina²; Matthew T Briggs²; <u>Alice Ly³</u>; Janina Oetjen³; Gurjeet Kaur Chatar Singh⁴; Manuela Klingler-Hoffmann²; Peter Hoffmann²

U University of South Australia

Future Industries Institute

- ¹Adelaide Proteomics Centre, The University of Adelaide, Adelaide
- ² Future Industries Institute, The University of South Australia, Adelaide
- ³ Bruker Daltonik GmbH, Bremen, Germany
- ⁴ Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, Malaysia

Overview

- Determine lymph node metastasis (LNM) in endometrial cancer (EC) using MSI
- Complementary MALDI MSI MS platforms used to generate metabolomic + proteomic profiles, providing more signals to evaluate as markers for EC with LNM.

Introduction

- One reliable prognostic factor in EC is the presence of LNM.
- Clinicians currently face challenge that radiological imaging and conventional surgical-pathological variables are unreliable in determining if the EC has metastasized.
- Molecular markers could provide insight into the tumour biology and the process that leads to metastasis and may immediately serve as diagnostic markers to guide surgeons

Methods

- Single sections (from one patient 60B) or formalin-fixed paraffin embedded EC tissue microarrays (TMAs) containing 2 cores from 43 EC patients (16 classified as LNM being present, 27 classified as no LNM) were sectioned for analysis.
- For peptide MSI, antigen retrieval and matrix deposition was carried out using two different described methods (Ref. 1,2).
- For small molecule MSI, sample preparation and matrix was carried out as previously described (Ref. 3).
- Prepared TMA's were analysed using two different MALDI MS platforms:
 - Bruker UltrafleXtreme MALDI-ToF MS
 - Bruker MALDI-tims-Qq-ToF MS platform
- Peptide imaging measured in positive ion mode, small molecule PI(18:0/0:0) was observed using both MALDI-tims-Qq-TOF and MALDIimaging in negative ion mode. Data assessed using SCiLS lab TOF, but more prominent in MALDI-tims-Qq-TOF (Fig. 2C) software

150000

Results

It was observed in Fig. 1 that MALDI-tims-Qq-TOF Skyline Spectra exhibited more peaks, with higher intensity, compared to MALDI-TOF MS Skyline Spectra

Figure 1: Skyline spectra obtained for metabolite (A) and peptide (B) MSI using the two MALDI MS platforms

- Fig. 2A shows distribution of a Phosphatidylinositol (PI) lipid, PI(18:0/0:0), in EC tumour region of a single section, also previously shown to be higher intensity in colon cancer tumour regions (Ref. 3)
- ROC assessment identified 29 signals from MALDI-tims-Qq-ToF data showing potential to be used as markers for LNM
- Fig. 2B shows PI(18:0/0:0) in EC tumour region of TMAs, which may be a potential marker for LNM. A comparison of the MALDI-tims-Qq-TOF measured signal against simulated PI(18:0/0:0) signal demonstrates that isotopic fidelity is preserved.

Figure 2: Distribution of *m*/*z* 599.32 in EC in single section (A), comparison of signal to simulated PI (B) and (C) ROC assessment to discriminate LNM presence (Green boxes) and absence in representative EC TMA using MALDI-tims-Qq-TOF

- Previous MSI analysis combined with IHC has identified peptides as markers for LNM in EC (Ref. 2, 4)
- Previous MALDI-TOF MS analysis (Ref. 4) observed Annexin A2 (*m/z* 1542.83), alpha Actinin 4 (*m/z* 1429.76 Da) and Annexin A1 (*m/z* 1099.29 Da), but not observed in MALDI-tims-Qq-TOF MS analysis
- A possible reason could be the use of different antigen retrieval and matrix deposition methods for each of the measurements (Ref. 1 for MALDI-tims-Qq-ToF MS, Ref. 2 for MALDI-ToF MS)

AUC = 0.515, *m/z 1542.83* ± *15 mDa m/z 1429.76* ± *15 mDa*

Figure 3: No distribution of Annexin A2 (*m*/*z* 1542.83), alpha actinin 4 peptide (*m*/*z* 1429.76 Da) and Annexin A1 peptide (*m*/*z* 1099.29 Da) in representative EC TMA using MALDI-tims-Qq-TOF MS

Conclusions

- MALDI-tims-Qq-TOF MS provided new potential small molecule markers for LNM
- Peptides from previous MSI analysis (Ref. 4) were not observed using MALDI-tims-Qq-TOF MS, but were observed using MALDI-TOF MS. This may be due to different sample preparation methods measured on each system, but also indicates high complementary nature between systems
- Future work aims to combine datasets using canonical correlation analysis (Ref. 2) and neural networks of signals from small molecule and peptide MSI

References

1.) Ly A, Longuespée R, et. al. Proteomics Clin. Appl. 2019 13(1): 1800029 (10 pp); 2.) Mittal P, Klingler-Hoffmann M, et. al. Proteomics. 2016 16(11-12):1793-801; 3.) Buck A, Ly A et. al. Journal of Pathology. 2015 237: 123-132; 4.) Mittal P, Klingler-Hoffmann M, et. al. Biochim Biophys Acta Proteins Proteom. 2017 1865(7): 846-857

AUC = 0.523, *m/z 1099.29* ± 15 *mDa*