Data-dependent auto-MSMS 3D-precursor selection for bottom-up proteomics with Parallel-Accumulation SErialFragmentation (PASEF) on a Trapped-Ion-Mobility quadrupole-Time-Of-Flight mass spectrometer (TIMS-QTOF)

ASMS 2008, MP-119

Markus Lubeck ${ }^{1}$; Jens Decker ${ }^{1}$; Michael Krause ${ }^{1}$; Scarlet Koch ${ }^{1}$; Heiner Koch ${ }^{1}$; Niels Goedecke ${ }^{1}$; Florian Meier ${ }^{2}$: Andreas-David Brunner ${ }^{2}$; Oliver Raether ${ }^{1}$; Matthias Mann ${ }^{2}$
${ }^{1}$ Bruker Daltonik GmbH, Bremen, Germany ${ }^{2}$ Max Planck Institute of Biochemistry, Martinsried, Germany

Introduction

The recently introduced PASEF acquisition mode on a TIMS-QTOF ${ }^{11}$ separates the incoming ion-beam mobility-dependent in time and elutes spatially condensed ionpackages from the TIMS device. In PASEF, precursors are detected in the m / z - and
mobility-dimensions. The quadrupole isolates distinct precursor species during the few milliseconds they actually elute from the TIMS device and immediately switches to the next precursor resulting in improved speed and sensitivity compared to traditional MSMS the precursor selection algorithm are the precursor selection algorithm are constrains dictated by the chromatographic retention length.

Methods

Tryptic digests of a human cancer cell line (HeLa) were separated by nanoLC with 90 min gradients and analyzed on a timsTOF pro instrument with modified acquisition software The quality of acquired MSMS spectra was evaluated using Mascot and PEAKS search engines; peptide spectr
normalized to 1% FDR.

Fig. 1: Overall workflow of the new 3D-clustering based precursor selection for PASEF measurements.
Gaol: optimize the number and quality of MS/MS spectra which can be obtained in a LC-TISS-QTOF bottom-u
experiment.

Results

Fig. 3: Venn diagrams of unique sequences obtained during tripicicate measurements of
the standard and new 3D-clustering approach (top), and comparison between both
algorithms (bottom)

Summary

A new 3D-clustering based precursor selection has been compared with a mobilogram peak picking approach using overlapping slices. An mproved recognition and separation of nearby precursors has been observed
The algorithm is fast enough to be used with a standard PC without additional accelerators. In around 300 ms , so that even more sophisticated approaches can be added.

References

${ }^{1}$) Meier et al., J. Proteome Res., 2015, 14 (12), pp 5378-538

Conclusions

- The new algorithm has shown to give an improved yield of unique peptide sequences.
- Further improvement can be expected from an online 4D-clustering under evelopment. Using the individual mobility width of the clusters for the scheduling is also an option for further improvement

