4D-Lipidomics workflow utilizing PASEF acquisition mode for increased throughput

ASMS 2021 – FP 499

Florian Zubeil¹, Ansgar Korf¹, <u>Viola</u> <u>Jeck¹</u>, Aiko Barsch¹, Nikolas Kessler¹, Sven W. Meyer¹

¹Bruker Daltonics GmbH & Co. KG, Bremen, Germany

Introduction

Lipids represent a biological compound class with a broad variety of chemical structures. Their essential biological roles make them interesting biomarkers in clinical research [1]. However, confident lipid annotation can be time consuming, and it requires an unambiguous differentiation of co-elution isobaric and isomeric compounds. The presented **4D-**Lipidomics workflow for increased throughput simplifies and streamlines the annotation and validation process using mobility enhanced MS data.

Methods

Lipids from NIST SRM 1950 reference

plasma (Sigma-Aldrich, Germany) were extracted using methyl-tert-butyl ether (MTBE) and the residues were dissolved in [1] Züllig et al. (2020), Mass Spectrom. Rev., early view. Methanol : Dichloromethane (9:1) [2]. The C18 reversed phase chromatography was performed using an Elute UHPLC system (Bruker). Run times were 5, 10 and 20 minutes, respectively. MS- and MS/MS data were acquired in positive and negative ESI mode using the **timsTOF Pro**

(Bruker) instrument in Parallel Accumulation Serial Fragmentation (**PASEF**) MS/MS mode [3,4]. The 4D data (m/z, RT,mobility, and intensity) was processed using a preliminary version of Metabo-Scape 2022 (Bruker).

MS	timsTof Pro	
Source	Apollo II ESI source	
Ioniz. mode	ESI (+ and -)	
Acquis. mode	PASEF MS/MS, 100 m	

LC	Elute
Column	YMC T
Column oven temp.	55°C (65°C (
Mobile phase	A: Me format B: IPA format

	20 min	10 min	5 min
Flow rate	0.4 mL/min	0.5 mL/min	0.55 mL/min
Gradient	0 min: 40% B 2 min: 43% B 2.1 min: 50% B 12 min: 54% B 12.1 min: 70% B 18.0 min: 99% B 18.1 min: 40% B 20 min: 40% B	0 min: 50% B 0.6 min: 50% B 2.0 min: 55% B 6.5 min: 80% B 6.6 min: 95% B 8.6 min: 99% B 8.7 min: 50% B 10 min: 50% B	0 min: 50% B 0.3 min: 50% B 0.75 min: 60% B 0.85 min: 85% B 3.0 min: 80% B 3.05 min: 95% B 4.33 min: 99% B 4.35 min: 50% B

References

[2] Matyash (2008), V. et al., J. Lipid Res., 49, 1137-1146 workflows.

elegans daf-2 mutants by 4D-Lipidomics.

- s ramp time

UHPLC

riart C18 column (100x2.1 mm, 1.9 µm)

- 20 min grad.), 60°C (10 min grad.), 5 min grad.)
- N/H2O (60:40 10 mM ammonium e, 0.1% FA)
- /MeCN/H2O (90:8:2, 10 mM ammonium e, 0.1% FA)

- [3] Application Note LCMS-158, Using Parallel Accumulation Serial Fragmentation (PASEF) to speed up untargeted 4D lipidomics LC-MS/MS
- [4] Application Note LCMS-175, Investigating the increased lifespan in C.
- [5] Tsugawa et al. (2020), Nature Biotechnology, 38, 1159-1163.
- [6] Hayen et al. (2018), Rapid Commun. Mass Spectrom., 32, 981-991. [7] Liebisch et al., The Journal of Lipid Research, 61, 1539-1555.

Workflow

1. 4D-PASEF acquisition. PASEF delivers high-quality MS/MS data with a large precursor coverage (red squares) of typically >65% in single acquisitions even at short run times.

2. 4D-Processing. The T-ReX 4D algorithm combined common adducts and isotopes belonging to the same compound into features.

Results

A. The maximum number of unique identified lipids were observed with 20 min gradient time. Increasing the chromatographic speed four-fold, the presented workflow still yielded 75% of the maximum observed lipids annotations.

3a. Rule-based annotation. The rule-based lipid features fragmentation rules for a wide range (> 40) of common lipid sub classes. It annotates based on the precursor m/z, isotopic pattern, and characteristic fragments in the MS/MS spectra. Predicted CCS values serve as additional qualifier.

3b. CCS-aware LipidBlast. Additionally, the CCS containing open-source MS/MS library LipidBlast can be used. It was compiled by Tsugawa and Fiehn et al. [5] and contains > 1/2 million of CCS values for lipids, together with their in-silico generated MS/MS spectra.

4. Deep Analysis 4D-KMD plots. 4D Kendrick mass defect (**KMD**) plot filtered to display unique PC lipids. This plot shows m/z on the x-axis vs. KMD (CH_2) on the y-axis. Trend lines can be used to assess potential wrong annotations or missing ones [6].

CCS values as a **qualifier**.

C. Distribution of the detected lipids in the m/z and **CCS** space (5 min runs, ESI-(+)). For different lipid classes, clear trends can be observed that enable validation of the annotations.

Overview

- lipid profiling.
- guidelines [7].
- annotations observed.
- chromatography.

B. Comparison of observed lipid **CCS values** from 5- and 20-min gradient run presents the power of

PASEF enables higher throughput

The lipid annotation tool in MetaboScape provides **rule-based annotation** for >40 sub-classes and reports according to most recent

Increasing the chromatographic speed four-fold, the presented workflow still yielded 75% of the maximum

The comparison of the measured CCS values for the 20- and 5-min gradients demonstrated the **independence of CCS** values from the

4D-Lipidomics