

A novel supervised learning algorithm for real-time collision energy selection to optimize peptide fragmentation in ion mobility-mass spectrometry

Introduction

- \succ The ability to identify peptides, proteins, and their associated post-translational modifications using mass spectrometry is directly linked to the level of fragmentation of peptide precursor ions.
- \succ Many precursor ion properties such as ion-mobility coefficient, mass-to-charge ratio and charge state affect the amount of collision energy required for optimal fragmentation.

Objective

 \succ To build an artificial neural network that selects collision energy that optimizes peptide fragmentation to improve peptide and protein identification sensitivity.

Methodology

HeLa whole cell lysate digest dataset from Bruker timsTOF Pro: 1,354,136 peptides fragmented with different collision energy values (5-100eV)

values

identification score.

Yun-En Chung¹, Matthew Willetts², Nagarjuna Nagaraj², Jens Decker², Jonathan Krieger², Tharan Srikumar², Mathieu Lavallée-Adam¹

¹ Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada ² Bruker Daltonics, Billerica, Massachusetts, United States

> Train artificial neural network to predict peptide identification confidence score using precursor ion properties as input.

m/z and collision energy-dependence of peptide

Predicted peptide identification scores correlate with observed

> Use the trained artificial neural network to predict a peptide's identification score at different collision energy values.

\blacktriangleright Select optimal collision energy that maximizes identification score.

Artificial neural network-predicted v.s. observed identification scores at different collision energy values for peptide ion INEELESQYQQSMDSK (+2)

Results

Artificial neural network captures the relationship between

Bin-averaged PEAKS score

Empirical optimal CE: **51.0 eV**

Collision energy values from the artificial neural network reflect empirically-identified optimal collision energy values better than default instrument values.

Artificial neural network-selected optimal collision energy shows distinct patterns according to charge state and varies from default collision energy used.

Applying optimized collision energy in real-time improves fragmentation by reducing intensity of unfragmented precursor ion by 2.18-fold on average, without sacrificing peptide identification sensitivity.

Artificial neural network-prediction

Identified 9.7% more peptides with post translational modifications in phosphopeptide enriched samples when using collision energy values selected by the artificial neural network.

Conclusion and Future Directions

- \succ The peptide identification score of a given precursor ion can be accurately predicted by an artificial neural network using only its ion properties and a collision energy value, without any peptide sequence information.
- \succ The artificial neural network enables selection of the optimal collision energy for a given peptide, which improves fragmentation and increases the number of phosphopeptides identified.
- \succ We will assess how our approach improves characterization of samples that are challenging to characterize, such as post-translational modifications of different types (eg. acetylation) or cross-linked peptides.

Acknowledgement

I would like to thank all the members of the Lavallée-Adam lab and our collaborators from Bruker Daltonics for their support and guidance on this project.

Contact: vchun060@uottawa.ca

