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OVERVIEW

RESULTS

Glioblastoma (GBM) is the most prevalent malignant brain tumor
among adults with a grim 5-year survival rate of 8-15 months.
Despite Temozolomide (TMZ) being the primary treatment, more
than half of patients do not respond, emphasizing the urgent need for
new Insights.

Using Matrix Assisted Laser Desorption/lonization mass
spectrometry 1maging (MALDI MSI), we identify distinct N-
glycosylation changes in GBM and N-glycans associated with TMZ
resistance. A
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MALDI images were created using SCILS software.
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” miz 2137.77 (Figure 1C).

Figure 1. Unique N-glycan pattern in GBM

Using pathology annotated Hematoxylin and
our analysis (Figure 1A), we identified 64

tissues. Notably, NTB samples exhibited higher
levels of bisecting structures as represented by
m/z 1688 (Hex3dHex1HexNAc5m/z) compared
to GBM (Figure 1B). To iInvestigate linkage-
specific changes In sialylated N-glycans, we
reactions
using AAXL bioorthogonal click chemistry! to

sialic acids. The a2,3 sialylated biantennary N-
lycan at 2137 m/z (Hex5HexNAc4NeuAcl +
2Na) exhibited significantly higher intensity iIn
the GBM sample compared to NTB samples
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Figure 2. Unique N-glycan pattern in
primary and recurrent GBM.
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Using pathology-annotated H&E tissue
sections as gquides (Figure 2A), we
compared the relative intensity of the 64
Identified unigue N-glycans from Figure 1
In primary and recurrent matched GBM
tissues. High mannose m/z 1419
(Hex6HexNAc2) exhibited higher intensity
In primary GBM compared to recurrent
GBM, while fucosylated m/z 1956
(Hex5dHex2HexNAc4) (Figure 2B) showed
elevated intensity in recurrent GBM samples
(Figure 2C). However, analysis of the 64
unigue N-glycans across primary and
recurrent GBM tissues did not reveal
consistent patterns within either group,
underscoring the heterogeneous nature
previously documented in GBM?Z.
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Figure 3. Unique N-glycan pattern in primary GBM also seen in
BTIC xenograft tissues.

To investigate glycosylation alterations in GBM and the impact of
TMZ treatment, we compared de-identified GBM samples with
mouse xenograft GBM tissues to ensure consistency in observed
trends. Core fucosylated N-glycans (such as m/z 2174
Hex6dHex1HexNAc5 + 1Na) were found at higher intensities in
GBM tissue and present in both TMZ-sensitive and TMZ-resistant
xenograft GBM tissues (Figure 3A). Additionally, we identified
specific fucosylated N-glycans exclusively present in NTB samples
(2508 Hex5dHex3HexNAc6) (Figure 3B). These results highlight
the distinctive N-glycan profiles distinguishing controls from GBM
samples, while also emphasizing the similarity of fucose signatures
between primary and xenografted GBM tumors.
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Figure 4. Unique N-glycan pattern TMZ sensitive vs TMZ
resistant xenograft

We identified 82 unique N-glycans within both TMZ-sensitive
and TMZ-resistant xenograft models. The N-glycan m/z 2101
(Hex5dHex3HexNAc4) iIs predominantly observed in PBS-treated
TMZ-sensitive tissue and showed decreased intensity post-TMZ
treatment In TMZ-sensitive tissue and In  TMZ-resistant
xenografts (Figure 4A). Conversely, the sialylated N-glycan with
m/z 2138 (Hex5HexNAc4NeuAcl + 2Na) was absent in TMZ-
sensitive xenografts but exhibited high intensity in TMZ-resistant
xenografts, remaining unaffected by TMZ treatment, indicating its
potential as a biomarker for TMZ resistance (Figure 4B).

CONCLUSION
&
FUTURE DIRECTIONS

This study unvells the complex interplay of glycosylation patterns,
tumor recurrence, and TMZ resistance in GBM. These findings
not only offer potential prognostic insights but also pave the way
for personalized diagnostics and targeted therapies in GBM.
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