

Utilizing Mass Spectrometry Imaging to Identify Potential N-Glycan Prognostic Biomarkers for Temozolomide Resistance in Glioblastoma Multiforme Tissues Aaron O. Angerstein¹, Lyndsay E.A. Young¹, Grace Grimsley¹, Xueqing Lun², Donna L. Senger²⁻⁴, Sabine Hombach-Klonisch^{5,6}, Thomas Klonisch⁵⁻⁷, Richard R. Drake¹

¹ Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 68 President Street, Charleston, SC, 29425, USA; ² Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary AB; ³ Gerald Bronfman Department of Oncology, McGill University, Montreal, QC; ⁴ Lady Davis Institute for Medical Research, Montreal, QC; ⁵ Departments of Pathology, ⁶Human Anatomy and Cell Science, University of Manitoba, Rady Faculty of Health Sciences, Max Rady College of Medicine, Winnipeg, MB; ⁷CancerCare Manitoba Research Institute, Winnipeg, MB

OVERVIEW

new insights.

primary and

model was used to elucidate the effects of TMZ on brain initiating cells tumor cells into mouse brains and administering TMZ treatment

Figure 2. Unique N-glycan pattern in primary and recurrent GBM.

Using pathology-annotated H&E tissue sections as guides (Figure 2A), we compared the relative intensity of the 64 identified unique N-glycans from Figure 1 in primary and recurrent matched GBM tissues. High mannose m/z 1419 (Hex6HexNAc2) exhibited higher intensity in primary GBM compared to recurrent while fucosylated m/z 1956 (Hex5dHex2HexNAc4) (Figure 2B) showed elevated intensity in recurrent GBM samples (Figure 2C). However, analysis of the 64 unique N-glycans across primary and recurrent GBM tissues did not reveal consistent patterns within either group, underscoring the heterogeneous nature previously documented in GBM².

Figure 3. Unique N-glycan pattern in primary GBM also seen in

To investigate glycosylation alterations in GBM and the impact of TMZ treatment, we compared de-identified GBM samples with mouse xenograft GBM tissues to ensure consistency in observed trends. Core fucosylated N-glycans (such as m/z 2174 Hex6dHex1HexNAc5 + 1Na) were found at higher intensities in GBM tissue and present in both TMZ-sensitive and TMZ-resistant xenograft GBM tissues (Figure 3A). Additionally, we identified specific fucosylated N-glycans exclusively present in NTB samples (2508 Hex5dHex3HexNAc6) (Figure 3B). These results highlight the distinctive N-glycan profiles distinguishing controls from GBM samples, while also emphasizing the similarity of fucose signatures

Figure 4. Unique N-glycan pattern TMZ sensitive vs TMZ

We identified 82 unique N-glycans within both TMZ-sensitive and TMZ-resistant xenograft models. The N-glycan m/z 2101 (Hex5dHex3HexNAc4) is predominantly observed in PBS-treated TMZ-sensitive tissue and showed decreased intensity post-TMZ treatment in TMZ-sensitive tissue and in TMZ-resistant xenografts (Figure 4A). Conversely, the sialylated N-glycan with m/z 2138 (Hex5HexNAc4NeuAc1 + 2Na) was absent in TMZsensitive xenografts but exhibited high intensity in TMZ-resistant m/z 2138.70 xenografts, remaining unaffected by TMZ treatment, indicating its potential as a biomarker for TMZ resistance (Figure 4B).

