

OVERVIEW

Goal: Identify changes in the structural diversity and number of tissue N-glycans associated with colorectal cancer progression

Colorectal cancer (CRC) is a leading cause of cancer death worldwide, and often develops from defined genetic mutations via pre-cancerous adenomas to adenocarcinomas.

N-glycan MALDI-IMS was applied to a cohort of human colon FFPE tissues from colonoscopies or surgery (n=60). Tissues ranged from normal colon tissue to benign polyps to cancerous tumors.

TISSUE PREPARATION AND ANALYSIS METHOD

Figure 1. Tissue preparation and analysis workflow. Colon FFPE tissues represented included small normal biopsies from right and left colon (n=25), adenomatous polyps with tubulovillus (n=5) or serrated features (n=3), and adenocarcinomas that were moderately (n=5) or well differentiated (n=5), or mucinous (n=7). Each tissue was processed for N-glycan imaging mass spectrometry using established protocols on a timsTOF fleX MALDI QTOF mass spectrometer. PNGaseF PRIME was used to release N-glycans, and distributions were visualized and quantified using SCiLS Lab software (version 2022a). Created in BioRender.com

References:

- 1. Drake, R. R., Powers, T. W., Norris-Caneda, K., Mehta, A. S., & Angel, P. M. (2018). In Situ Imaging of N-Glycans by MALDI Imaging Mass Spectrometry of Fresh or Formalin-Fixed Paraffin-Embedded Tissue. *Current protocols in protein* science, 94(1), e68. https://doi.org/10.1002/cpps.68
- 2. Holst, S., Wuher, M., & Rombouts, Y. (2015). Glycosylation Characteristics of Colorectal Cancer. In R. R. Drake & L. E. Ball (Eds.), Advances in cancer research: glycosylation and cancer (Vol. 126, pp. 203–257). chapter, Elsevier Inc. https://doi.org/10.1016/bs.acr.2014.11.004
- Sawicki, T., Ruszkowska, M., Danielewicz, A., Niedźwiedzka, E., Arłukowicz, T., & Przybyłowicz, K. E. (2021). A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 13(9), 2025. https://doi.org/10.3390/cancers13092025

Acknowledgements:

This work was supported by CA226086 to KW and P30 DK123704, U01 CA242096 to RRD.

Contact: Rachel Stubler PhD Student, Drake Lab Medical University of South Carolina stubler@musc.edu

Defining a Human N-glycome Tissue Atlas of the Colon Adenoma to Adenocarcinoma Sequence by N-glycan MALDI-IMS

Rachel Stubler; Grace Grimsley, David Lewin, Kristin Wallace, Richard R. Drake **Medical University of South Carolina, Charleston, SC**

TISSUE HISTOLOGY

Figure 2. Hematoxylin and eosin stained tissues representing the progression of colorectal cancer.

Figure 3. Hematoxylin and eosin stained, segmentation analysis, and MALDI-IMS images of normal tissue biopsies. Highlighted m/z values are 1905.6433, 1809.6432, 2012.7152, and 2100.7294. Glycan images corresponding to m/z are shown.

ADENOMA

Figure 4. Data from three colon polyps. Venn diagram highlighting similarities and differences among different types of colon polyps (created in BioVenn). Segmentation analysis and MALDI-IMS images of polyps with glycan images corresponding to m/z values shown. Highlighted m/z values are 14.5094, 2450.8629, 1419.4717, and 1590.5596. Representative images highlight glycans more concentrated in specific adenoma types.

TA with HGD- tubular adenoma with high grade dysplasia; SSA- sessile serrated adenoma; LA- lymphoid aggregate

Invasive Mucinous Adenocarcinoma

Mixed Adenoma and Adenocarcinoma

Figure 5. Venn diagram illustrating increasing number of glycans during progression from a malignant polyp to invasive mucinous adenocarcinoma and segmentation analysis of tissue samples (created in BioVenn).

High mannose and non-sialylated biantennary structures with a bisecting N-

- normal colon biopsies All tissues analyzed contained high
- mannose N-glycans. For adenomas, larger branched N-glycans with multiple fucoses were detected along with sialylated bi-antennary glycans in regions of collagen networks (n=50-60 Nglycans per tissue).
- Differences in adenoma N-glycans were
- their own distinct set of N-glycans.
- per tissue).

ADENOCARCINOMA

CONCLUSIONS

acetylglucosamine were most abundant in

detected that were specific to tubular or serrated pathologies. Samples of mixed adenoma/adenocarcinomas and adenocarcinomas contained areas of epithelium, stroma, and smooth muscle, each with

Mucinous adenocarcinomas were the most diverse adenocarcinomas and contained tetra-antennary glycans with multiple fucoses (n=4=9) and a bisecting N-acetylglucosamine (n=180-200 N-glycans detected

Ongoing characterizations are centered on defining the N-glycans present in immune aggregates in some tissues, correlating with immunohistochemistry data and other histology stains.