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Introduction
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characterization of drug metabolites play a critical
role in preclinical and clinical development stages . b
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non-targeted LC-timsTOF Pro PASEF
metabolomics workflow was conducted to profile
and characterize drug metabolites (Figure 1).
Metabolites were postulated by utilizing
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spectral library and comparison of acquired to ( }

reference or predicted CCS values using a novel Figure 3. Fentanyl biotransformation (a) from reference [3] and (b) from BioTransformer in MetaboScape

CCS prediction algorithm. Together, each of these

steps forms a fully integrated workflow that demonstrates significant increase in number of MS/MS acquired for sample analysis under LC-timsTOF PASEF
utilizes the four-dimensional data to ensure low (MS/MS). Data analysis and peak picking were performed in MetaboScape with the T-ReX®4D algorithm applied for
level drug metabolites can be annotated. automatic feature extraction, RT alignment, mass and CCS calibration. Data was further evaluated using the

BioTransformer tool to predict drug metabolites based on Cytochrome P450 Phase | biotransformation. All possible

Methods
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Figure 5. Fentanyl metabolite confirmation by spectral library, in silico fragmentation and CCS prediction

Results and Discussion

metabolites from enzymatic reactions of hydroxylation, terminal Refel"ences
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(PASEF) capability in timsTOF Pro provides very

fast MS/MS acquisition speed at full sensitivity Iistgd In Figure 3, and its metabolites were displayed in Figure 4 1) Djoumbou-Feunang et al.; Journal of

following ion mobility separation, which could which were annotated based on mass accuracy, isotope pattern Cheminform, 2019:11:2

detect very low abundant metabolites for MS/MS matching, and further confirmed by in silico MS/MS fragment ?2) https://pubchem.ncbi.nlm.nih.gov/compound/3
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Figure 2. Fentanyl BPC, EIC, EIM, MS, PASEF (MS/MS) by LC-  Figure 4. time profile of fentanyl and its metabolites ADME/DMPK & Drug Discovery
timsTOF Pro PASEF
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