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demonstrates significant increase in number of MS/MS acquired for sample analysis under LC-timsTOF PASEF 

(MS/MS). Data analysis and peak picking were performed in MetaboScape with the T-ReX®4D algorithm applied for 

automatic feature extraction, RT alignment, mass and CCS calibration. Data was further evaluated using the 

BioTransformer tool to predict drug metabolites based on Cytochrome P450 Phase I biotransformation. All possible
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CCS-enabled timsTOF Pro PASEF workflow for in vitro human 
liver microsome drug metabolites profiling and characterization

▪ In vitro HLM/fentanyl drug metabolism analysis 

by TIMS enabled timsTOF Pro PASEF 

metabolomics workflow

▪ Data Analysis was performed in MetaboScape 

2022b on metabolite profiling and 

characterization

▪ Integrated software addresses common needs 

for advancing pharma, metabolomics, 

lipidomics, non-targeted screening and 

exposome research
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Fast and accurate identification and 

characterization of drug metabolites play a critical 

role in preclinical and clinical development stages 

to assist lead compound structure optimization, 

screening drug candidates, and finding active or 

potentially toxic metabolites. In this work, a DDA 

non-targeted LC-timsTOF Pro PASEF 

metabolomics workflow was conducted to profile 

and characterize drug metabolites (Figure 1). 

Metabolites were postulated by utilizing 

BioTransformer[1], a knowledge and machine 

learning based approach to predict small 

molecules metabolism. Metabolite structures 

were elucidated by in silico fragmentation, MS/MS 

spectral library and comparison of acquired to 

reference or predicted CCS values using a novel 

CCS prediction algorithm. Together, each of these 

steps forms a fully integrated workflow that 

utilizes the four-dimensional data to ensure low 

level drug metabolites can be annotated.

A time-series experiment was conducted by 

spiking human liver microsomes (HLM, Promega) 

and fentanyl (Sigma) into a pre-incubated NADPH 

regeneration system at 370C; 100 µL of reaction 

solution at 0, 5, 15, 30, 45, 60, 90 and 120 min was 

aliquoted; the reactions were stopped by adding 

cold acetonitrile;  all samples were centrifuged at 

12,000 rpm at 40C for 10 min; the supernatant was 

transferred into sample insert vial and 5 µL was 

injected (n=3) for each of the two biological 

replicates. Analysis was performed by Elute 

UHPLC timsTOF Pro (Bruker) with PASEF data 

acquisition and ESI positive mode. Data analysis 

was conducted in DataAnalysis 5.3 and 

MetaboScape 2022b (Bruker).
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Figure 1. In vitro HLM-drug metabolism by LC-timsTOF Pro PASEF

The parallel accumulation serial fragmentation 

(PASEF) capability in timsTOF Pro provides very 

fast MS/MS acquisition speed at full sensitivity 

following ion mobility separation, which could 

detect very low abundant metabolites for MS/MS 

with data dependent acquisition. Figure 2
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Figure 2. Fentanyl BPC, EIC, EIM, MS, PASEF (MS/MS) by LC-
timsTOF Pro PASEF

Figure 3. Fentanyl biotransformation (a) from reference [3] and (b) from BioTransformer in MetaboScape
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Figure 5. Fentanyl metabolite confirmation by spectral library, in silico fragmentation and CCS prediction 

metabolites from enzymatic reactions of hydroxylation, terminal 

desaturation, N-dealkylation,    N-oxidation and epoxidation were 

listed in Figure 3, and its metabolites were displayed in Figure 4 

which were annotated based on mass accuracy, isotope pattern 

matching, and further confirmed by in silico MS/MS fragment 

and CCS predict Pro model (Figure 5).

Figure 4. time profile of fentanyl and its metabolites


