dia-PASEF Proteomic Analysis of HNSCC Tumor and Stroma Enriched Sections from FFPE Samples Prepared with Laser Capture Microdissection <u>Jasmin Meltretter</u>¹, Verena Telstrom¹, Aswini Panigrahi², Allison L. Hunt³, Diego Assis⁴, Radoslav Goldman², Thomas P. Conrads³ and Matthew Willetts⁴ ¹Bruker Daltonics GmbH & Co. KG, Bremen, Germany, ²Georgetown University, Washington DC, Stockholm, ³Women's Health Integrated Research Center, Annandale, VA, ⁴Bruker Scientific, Billerica, MA ### Introduction neck squamous carcinoma (HNSCC), an epithelial cancer is the most common type of head and neck cancer. HNSCC cells first invade the basement membrane of the native epithelium, and in >50% proceed metastasis, which is associated with poor survival. Overall, the response to treatments available moderate. The genomic transcriptomic landscape of HNSCC (The Cancer Genome Atlas) has been defined, but pinpointing the genetic aberrations linked tumor phenotypes remains elusive. Here we performed deep proteome analysis of tumor and matched normal adjacent tissues (NATs) (Clinical Proteomic Tumor Analysis Consortium). The proteomic comparison of the cancer neighboring cells microenvironment may help identify novel targets for early detection, and intervention of HNSCC # Methods study, laser capture microdissection (LCM) was used to collect tumor and stroma enriched sections from formalin-fixed paraffinembedded (FFPE) tissues. The samples were processed digested with trypsin. dia-PASEF LC-MS/MS analysis was performed timsTOF the using mass spectrometer connected nanoElute 2 LC system via a CaptiveSpray 2 source. Each sample was analyzed in triplicate using a 32minute gradient (500 ng peptide per injection, 40 min total run time on a 25 cm Aurora Ultimate 25cm x 75µm column), resulting throughput of 24 samples per day. The dia-PASEF window scheme was calculated using the py_diAID tool developed by the Mann Lab (ref 1). Data analysis was performed using the directDIA+ workflow (Spectronaut 18 software) and the Uniprot-Humanreviewed database (20,383 protein entries). Ref 1. https://github.com/MannLabs/pydiaid Conflict of interest: JM and VT are employees of Bruker Daltonics GmbH & Co KG. MW and DA are employees of Bruker Scientific, Inc. #### Results Replicate injections of tumor and stroma sample showed excellent chromatographic reproducibility (Figure 1) with CVs under 10% at the protein level. Fig. 1. Highly reproducible analysis. A and B show the overlap of three replicate injections of tumor and stroma samples. Median CVs of quantified protein groups were consistently under 10% (C). - >8800 protein groups were identified in tumor tissue from over 106,000 peptides. Almost 7800 of the identified proteins were identified with at least two peptides. - >8700 proteins were identified from the stroma from over 103,000 peptides Fig. 2 More than 8800 proteins groups were identified in tumor samples and >8700 in stroma samples. >8600 proteins and >113,000 precursors were identified across all samples. Fig. 3. All stroma samples clustered together and are clearly separated from the tumor group by hierarchical analysis. Fig. 4. Volcano plot showing differentially expressed proteins in tumor vs stroma samples. Fig. 5. GO functional and pathway enrichment analysis Fig. 6. Protein—protein interaction analysis using the STRING database (https://string-db.org/). ## Summary - > 8,800 protein groups and >100,000 peptides were identified in 32 minutes gradient time on the timsTOF HT. - More than 8,600 protein groups were identified in all conditions (stroma and tumor). - GO functional and pathway enrichment analysis of these proteins identified several functional groups relevant to stromal and tumor regions, e.g., higher abundance of growth factor binding, collagen binding, heparin binding proteins, and ECM structural constituents in the stromal region - dia-PASEF acquisition on the timsTOF HT allows high throughput analysis of FFPE tissue samples with high depth of coverage. - The methodology allows for comparative deep proteome analysis of tumor and its adjacent microenvironment in a scalable format. nanoElute + timsTOF HT