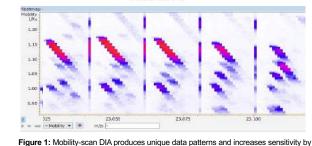

INTRODUCTION

Cycling deterministically through segments of a predefined precursor m/z range, data-independent acquisition approaches provide a comprehensive record of all detectable precursor and fragment ions by isolating and fragmenting populations of different precursor ions. The recently introduced diaPASEF method utilizes the correlation of molecular weight and ion mobility in a trapped ion mobility device (timsTOF Pro 2) to extend sensitivity and specificity of established targeted data extraction workflows by the additional ion mobility dimension. Here, we discuss a novel DIA scan mode, which uses mobility-specific micro-encoding of overlapping quadrupole windows to maximize information content in DIA acquisitions.


METHODS

Total protein extracts from HeLa cells were digested and analyzed via nanoLC coupled to a timsTOF Pro 2. Spectral libraries were generated from triplicate PASEF-DDA acquisitions of high pH reversed-phase fractions of each sample. Overlapping ion-mobility-dependent quadrupole windows were defined based on spectral library data to provide >99% library coverage over the full mass range. Datasets were acquired on a modified timsTOF Pro 2 platform in both diaPASEF and several variations of the novel acquisition scheme (varying cycle time, quadrupole window size and overlap) with and without collision energy to evaluate and optimize acquisition workflow performance. Precursor-fragment deconvolution tools were trained on unfragmented HeLa datasets.

DATA ACQUISITION CONCEPT

RESULTS

overlapping diagonals.

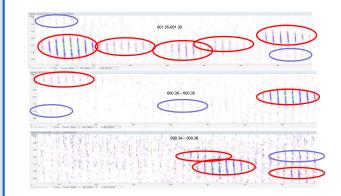


Figure 2: Mobility-scan DIA data complexity on fragment ion level DIA analysis of 200 ng HeLa digest on a modified TimsTOF Pro2 platform. Extracted ion chromatograms of the indicated mass ranges were generated in Data Analysis viewer. Discernible features are highlighted.

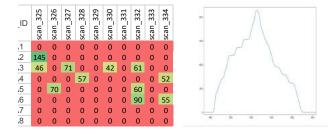
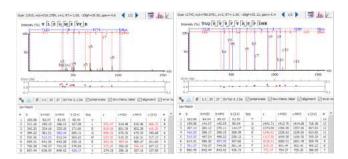



Figure 3: Low-intensity mobility-scan DIA data pattern enable precursor position modelling Algorithmic prediction of the most likely precursor ion position based on a data occupancy matrix enables to pinpoint precursor ion positions with an accuracy of a few Da.

Figure 4: Database search results of deconvoluted mobility-scan DIA data Deconvoluted mobility-scan DIA data from a HeLa digest were exported as .mgf files and submitted to Mascot Search. Exemplary peetide identifications are shown.

	DDA1	DDAZ	DDA3	DOA4	DDA5	DDA6	DDA7	DDAS	MSDIA	count DDA
b3	2402.9	7336.4	419.76	448.28	255.36	270.52	28.001	482.28	12726	8
b4	802.82	4029.7	488.95	316.39	29.195	28.042	13.934	184.24	\$090	8
b6-NH3	393.58	1400.8	137.57	218.76	129.03	66.787	104.03	119.07	2378	8
¥10	39485	136530	5478.9	15052.6	4288.3	3257.0	106.64	3533.3	121628	
*3	2857.4	11412	345.2	994.8	271.35	265.26	223.04	145.6	10179	8
y4	2014.8	5093.6	120.25	349.87	132.03	68.979	50.714	37.041	9202	8
¥6	3936.4	10116	399.31	1519.63	175.72	300.07	131.93	48.535	15109	8
17	2533.6	10035	228.47	638.9	224.72	185.66	48.246	35.355	11959	8
18	4452.8	15756	429.13	1066.8	\$32.38	405.54	31.587	201.98	21666	8
b2	2093.4	7269.4	488.35		113.22	49.757	33.963	207.79	L	7
15	1634.9	7101.5	317.82	522.32	176.15	52.51		79.635	11836	7
19	7213.9	26118	622.52	2620.7	904.96	1010.3		1298.5	39181	7
56	578.22	3434.4	258.247	34.824			19.367	58.056	3541	5
b7	882.74	2798.1	219.534	283.45	58.56	1.0		154.66	1559	6
v10-NH3	5574.7	16047		372.06	755.15	419.4	118.41		11893	6
v8-NH3	498.55	1702.4		57.324	20.401	26.124	19.266		2238	6
bő	915.36	3124.3	297.7	263.26	-		33.599		2919	5
b8-NH3	669.57	2509.9	68.134	73.081				72.791	2458	
b5-NH3			106.5	111.64		73.777		42.717		4
68-H2O	168.01	1250.3		10.573	53.153				2832	4
69	956.08	2221	92.37	259.89					3119	4
69-H2O	239.98	2098.6	128.63	96,742					3792	4
19-NH3	487.51	712.93		4.5817		39.956	1		1880	4
10-H20		1354.9	165.72	100.85				39.452	5083	4
11	5961.5	38546		1534.65		530 13			6400	4
y11[2+]	000000		17.314		117.68	-	136.37	169.37	13444	4

Figure 5: Exemplary fragment ion coverage provided by mobility-scan DIA compared to eight reference DDA runs.

CONCLUSIONS

- Novel quadrupole scanmode provides the basis for comprehensive, fast and highly sensitive DIA
- Using overlapping quadrupole selection windows, the method can theoretically provide a 2.5-fold increase in fragment ion sensitivity compared to diaPASEF
- To enable in-depth data processing of resulting high-complexity datasets, we developed algorithms for multidimensional peak detection and to classify whether the intensity distribution of a given fragment matches the one of a target precursor to generate highly specific pseudo-MSMS spectra on the basis of multidimensional deconvolution (RT, IMS, quad window), which can be converted into common MS/ MS data formats such as mgf and searched directly with established tools like PEAKS and Mascot

ACKNOWLEDGEMENTS

This work was supported by grants from the the BMBF (MSCORESYS, DIASyM FKZ 161L0217A), as well as the Forschungszentrum Immuntherapie (FZI).