

ブルカーバイオスピン(株)アプリケーション部

佐藤一・金場哲平

はじめに

- 核磁気共鳴(NMR)法は原子1個の分離能を有する.
 いくつかのNMR実験を組み合わせることにより、低分子のNMRシグナルの帰属を比較的容易に行うことができるようになってきている.
- NMRシグナルの帰属が完了したのち、次のステップとして、分子のダイナミクス(運動性)の解析を行うという道がある.弊社はダイナミクスの解析を行うソフトウェアDynamics Centerを開発した.これを用いて、緩和時間および拡散係数の解析を簡便に行えるようになった.
- タンパク質では、¹⁵Nの*T*₁, *T*₂緩和時間および異種核間NOE実験からオーダーパラメータを、また、横緩和分散法から交換速度を求める. Dynamics Centerの中のProtein Dynamicsというツールを用いてタンパク質のダイナミクスの解析を行えるようになった.

本Webinarの内容

- 緩和時間と拡散係数のNMR実験のイントロダクション
- ソフトウェアDynamics Centerの機能の説明
- *T*₁緩和時間の解析
- 拡散係数の解析
- タンパク質のダイナミクス解析のイントロダクション
- タンパク質のダイナミクス解析

単一の周波数をもつ電磁波: パルス

7₁緩和時間

- 縦緩和時間とも言う.
- 縦緩和またはスピン-格子緩和とよばれる時定数.
- 熱平衡状態にあるスピン系に、180度パルスにより反転させた後、熱平衡状態(静磁場 方向)に向かって回復する過程。
- 積算の繰り返し時間の参考になる.
 - 教科書的に、磁化が完全に回復するには、待ち時間 = T_1 の5倍以上(90度パルスのとき)

待ち時間 = T_1 の2.5倍以上 (30度パルスのとき)

- 分子内の運動性を議論できるようになる。
- 生体高分子と低分子の相互作用解析に用いられる.

T2緩和時間

- 横緩和時間とも言う.
- 横緩和またはスピン-スピン緩和とよばれる時定数.
- 磁化ベクトルの横軸成分が指数関数的に減衰して,熱平衡状態に近づいていく過程.
- シグナルの線幅・線形に関与する.
- FIDの取り込み時間は*T*₂を参考にする.
- 低分子の場合, T₂≒T₁となる.

- 拡散係数を求める.
- NMRチューブにおいて, 鉛直方向の運動性を議論できる.
 - 分子が伸びているか, または, 丸まっているか
- 混合物の場合,拡散係数の違いにより、シグナルを分離できる.

- -z方向へ反転された磁化の熱平衡状態へ回復する時間がシグナルごとに異なる。
- シグナルごとに(原子レベルの分解能で) T₁緩和時間の解析ができる.

- (d20 p2 d20) 配列の回数によって、 シグナルごとに減衰が異なる.
- シグナルごとに(原子レベルの分解能で) T₂緩和時間の解析ができる.

拡散係数 Diffusion-Ordered SpectroscopY (DOSY)

DOSY - 拡散時間∆を長くする

DOSY – シグナル強度の違い

分子(拡散係数)の違いにより、シグナル強度の減少が異なる.

DOSY – グラジェントパルス(磁場勾配)の強度

グラジェントパルスを強くすると、各平面における回転が速くなるために、 上下方向の運動の変化に対して敏感になる.

Diffusion-Ordered SpectroscopY (DOSY)

ソフトウェアDynamics Center 2.3の機能

- General Dynamics Method Center
 - *T*₁, *T*₂緩和時間
 - 拡散係数
 - 固体NMR関連
- Protein Dynamics (別途ライセンスが必要)
 - ¹⁵N *T*₁, *T*₂緩和時間
 - ¹H-¹⁵N 異種核間NOE
 - タンパク質のダイナミクスのモデリング
 - Τ_{1ρ}
 - R_{ex} (緩和分散)

実際の手順

- *T*₁
- DOSY

実際の手順 – T₁

- 標準パラメータセット: PROTONT1
 - VDリストの作成とその行数をTD1に入力する.
- レシーバゲインを調べて,積算を開始する.rga,zg
- F2方向のフーリエ変換, 位相補正とベースライン補正. xf2, phase, abs2.
- 自動測定用のソフトウェアIconNMRを用いて測定が可能.

TopSpin \rightarrow Analyse \rightarrow Dynamics \rightarrow Prepare for Dynamics Center

TopSpin 3.2 pl-7またはTopSpin 3.5以降のバージョンで、TopSpinとDynamics Centerの連携が強化されました.

Auto Process - F2方向のフーリエ変換, 位相補正 を行っていない場合

S	tart A	cquire	Proces	s A <u>n</u> alyse	Publish	View	Manage	0			12
ck					<mark>≷ D</mark> yr	namics Ce	enter				
114	*8 *2 /8 /2					**	₩ <u>₩</u> ₩ ₩ ₩ ₩ ₩ \$				
0 er	2 trp_and_lys	2 C:¥nmr	г₫ж⊠		4						
*	row 8 from tr	_and_lys 2	1 C:\nmr								- E
								_			
	7.0344 ppm / 28 Define new region Drag with left	4.6726 Hz n: ouse button									0.015
	Number of peaks						1				
											- 8
						1			1		-
											- 0.00
								KIN I	11-		
			L								

Manual Peak Picking – ピークピッキングの保存

Manual Peak Picking – Dynamics Centerの起動

Dynamics Center -TopSpinでピークピッキングしたシグナルが解析された

Dynamics Center – T₁値の一覧

T1 Analysis C:/nmr/trp_and_lys/2	/pdata/1/2rr		BRUKER				
Fitted function:		f(t) = lo * [1 - a*exp (-t	/T1)]				
Random error estimation	n of data:	RMS per spectrum (or	trace/plane)				
Systematic error estimat	ion of data:	worst case per peak s	cenario				
Fit parameter Error estin	nation method:	from fit using calculate	ed y uncertainties				
Confidence level:		95%					
Used peaks:	sed peaks:		peaks from C:/nmr/trp_and_lvs/2/pdata/1/peaklist1D.xml				
Used integrals:	ed integrals:		peak intensities				
Peak name	F2 [ppm]	T1 [s]	error				
1	7.666	2.62	0.1510				
2	7.646	2.50	0.1370				
3	7.471	5.12	0.2860				
4	7.451	5.06	0.2282				
5	7.240	6.73	0.1725				
6	7.224	2.77	0.3499				
7	7.221	2.68	0.3135				
8	7.207	2.81	0.2242				
9	7.204	2.74	0.1551				
10	7.186	2.73	0.2504				
11	7.183	2.66	0.2558				
12	7.139	2.45	0.1913				
13	7.137	2.38	0.1724				
14	7 119	2 47	0 1276				

Dynamics Center – T₁緩和曲線

T₁を用いた蛋白質と低分子の相互作用解析

TrpとLysの混合物

TrpとLysの混合物に蛋白質(BSA)を加えた

Peak name	F2 [ppm]	T1 [s]	error	Peak name	F2 [ppm]	T1 [s]	error
	7.666	2.62	0.1510	1	7.665	2.24	0.07980
	7.646	2.50	0.1370	2	7.645	2.25	0.07417
Ture	7.471	5.12	0.2860	3	7.470	3.72	0.1261
	7.451	5.06	0.2282	4	7.450	3.57	0.1006
	7.240	6.73	0.1725	5	7.240	4.47	0.06436
	7.224	2.77	0.2400	6	7.223	2.44	0.1518
-	7.221	2.68	ニー て は ふしう	-/++	7.203	2.28	0.07679
	7.207	2.81	── / 1但ハハへ	くなつに	7.185	2.21	0.1119
	7.204	2.74			7.138	2.06	0.09128
	7.186	2.73			7.118	2.05	0.06357
	7.183	2.66	↓		7.100	2.02	0.1292
	7.139	2.45	正占后1-4生。	$\Delta \tau \tau$	3.995	1.98	0.08410
	7.137	2.38	重日見に結	言している	3.982	1.96	0.07319
	7.119	2.47			3.975	1.94	0.07132
C.L.	7.117	2.51	0.1777	15	3.962	1.87	0.07703
	7.102	2.53	0.3030	16	3.691	2.16	0.1134
	7.100	2.38	0.3044	17	3.675	2.43	0.06524
	3.996	2.79	0.1858	18	3.660	2.10	0.1093
	3.983	2.82	0.1566	19	3.628	0.635	0.01204
	3.975	2.82	0.1513	20	3.435	0.610	0.06586
	3.963	2.82	0.1755	21	3.423	0.578	0.06780
Ý	3.691	2.87	0.2265	22	3.397	0.640	0.04299
	3.675	3.04	0.1255	23	3.384	0.657	0.05169
	3.660	2.94	0.2247	24	3.257	0.724	0.04807
	3.434	0.749	0.1244	25	3.237	0.676	0.04654
	3.423	0.592	0.09925	26	3.219	0.688	0.07026
	3.396	0.705	0.07413	27	3.199	0.638	0.07155
1	3.384	0.649	0.07372	28	2.963	1.17	0.03382
	3.257	0.717	0.06507	29 LVS	2.944	1.21	0.02469
	3.237	0.688	0.06773	30	2.925	1.15	0.03279
	3.219	0.817	0.1155	21	1.834	1.05	0.03887
	3.199	0.719		1 18	+ 1 1	0.798	0.04723
	2.963	1.33		んと変わら	ふい ―	0.778	0.03751
LVS	2.944	1.36	0.1		• • • • • • • • • • • • • • • • • • •	0.794	0.08470
	2.925	1.35	0.(0.994	0 1291

蛋白質に結合していない

実際の手順 – DOSY

- 標準パラメータセット: DOSY
- レシーバゲインを調べて、積算を開始する. rga, dosy
- F2方向のフーリエ変換, 位相補正とベースライン補正. xf2, phase, abs2.
- 自動測定用のソフトウェアIconNMRを用いて測定が可能.
- T₁の手順と似ている.

TopSpin \rightarrow Analyse \rightarrow Dynamics \rightarrow Prepare for Dynamics Center

TopSpin 3.2 pl-7またはTopSpin 3.5以降のバージョンで、TopSpinとDynamics Centerの連携が強化されました.

Auto Process - F2方向のフーリエ変換, 位相補正 を行っていない場合

<u>S</u> tart	Acquire	Process	Analyse	P <u>u</u> blish	View	<u>M</u> anage	0			1	2
ack				🗮 <u>D</u> yna	amics Cer	nter					
	*8 *2 🌖 💭 🖭 /8 /2 🛓 💭 😭	ыны Соранти Царания Парал	H=+1% ∓ +->* ±			₩-œ \$ ₩-₩ \$ ₩-₩ \$					
st50 St50	uinine_and_sucrose 13 2 <mark>に</mark>	C:¥nmr L. <u>L.</u> Ж. Ш.	a d 4 9.	1							×
ne row	w 1 from quinine_and_s	sucrose 13 1 C:\	nmr								<u> </u>
ng nn big nu 1.380	86 ppm // 554.619 Hz	1 2 2 2 2 2 2 2 2 2 2 2 2 2	ш 	444 8644 866444 86644486644 86644 866444 866444 866444 866444866444 8664448	-4.78 -4.77 -4.75 -4.75 -4.73 -4.48 -4.48			2.17 2.13 2.17 2.17 2.17 2.17 2.17 2.17 2.17 2.17			- 00
DL MAXI MI = QL Nub	= 13.50 rel I = 10000.00 rel = 0.00 rel = 1.00 ber of peaks: 130										- o
								 			- 4
			4					1			- 7
									<u> </u>		0 1 1 1 1 1 1 1 1 1 1

Manual Peak Picking – Dynamics Centerの起動

Dynamics Center – TopSpinでピークピッキング したシグナルの拡散係数が解析された

Fitted function:		f (x) = Io * exp (-D * x ² * gamma ² * littleDelta ² (bigDelta-littleDelta/3)* 10 ⁴				
used gamma:		26752 rad/(s*Gauss)				
used little delta:		0.0040000 s				
used big delta:		0.059900 s				
used gradient strength:		variable				
Random error estimation	n of data:	RMS per spectrum (or	trace/plane)			
Systematic error estimat	ion of data:	worst case per peak se	cenario			
Fit parameter Error estin	nation method:	from fit using calculate	d y uncertainties			
Confidence level:		95%				
Used peaks:		peaks from C:/nmr/quinine_and_si ml	ucrose/13/pdata/1/peaklist1D			
Used integrals:		peak intensities				
Used Gradient strength:		all values (including re	plicates) used			
Peak name	F2 [ppm]	D [m2/s]	error			
1	8.668	2.75e-10	2.071e-12			
2	8.656	2.81e-10	2.008e-12			
3	7.921	2.84e-10	2.121e-12			
4	7.898	2.82e-10	1.840e-12			
5	7.495	2.75e-10	1.800e-12			
6	7.484	2.80e-10	1.410e-12			
7	7.388	2.82e-10	3.387e-12			
8	7.381	2.87e-10	4.271e-12			
9	7.365	2.84e-10	3.845e-12			
10	7.358	2.82e-10	4.154e-12			
11	5.908	2.82e-10	1.198e-11			
12	5.889	2.83e-10	1.229e-11			
13	5.883	2.84e-10	1.061e-11			
14	5.864	2.77e-10	6.588e-12			
15	5.847	2.75e-10	9.332e-12			
16	5.840	2.84e-10	1.068e-11			
17	5.821	2.73e-10	9.920e-12			
18	5.610	2.75e-10	7.299e-12			
19	5.598	2.85e-10	7.453e-12			
20	5.231	2.77e-10	1.192e-11			
21	5.216	2.78e-10	8.708e-12			
22	5.201	2.82e-10	1.260e-11			
23	5.172	2.36e-10	1.315e-12			
24	5.164	2.34e-10	2.003e-12			
25	5.157	2.38e-10	2.061e-12			
26	5 041	2 31e-10	1 9996 12			

- タンパク質は溶液中において構造の揺らぎを持つことが多い。
- タンパク質のダイナミックな性質を理解することは、 例えば酵素と基質の結合や、タンパク質-タンパク質 相互作用などの解析において重要である。

タンパク質の構造上の揺らぎや動的な性質を調べる上でNMRは最も有力な手法である.

はじめに – ダイナミクスのタイムスケールとNMR法

タンパク質には様々なタイムスケールのダイナミクスが存在し、 それらを解析するためのNMR法が開発されてる.

15N

15N

本webinarの内容

- ¹⁵N *T*₁, *T*₂緩和と ¹H-¹⁵N 異種核間NOE (hetero NOE) の測定.
- 主鎖アミドのダイナミクスの解析 (モデルフリー解析).

主鎖アミドの速いタイムスケール(ピコ-ナノ秒)のダイナミクスの解析. 例えば、あるアミノ酸残基がタンパク質の溶液構造中において どの程度揺らいでいるか、といった情報を反映している.

Dynamics Center のProtein Dynamicsを使った実際の解析手順.

測定に必要なサンプルとハードウェア

タンパク質の主鎖アミドの緩和測定に必要なサンプルとハードウェア.

- ¹⁵N標識したタンパク質と二重共鳴用のNMR分光計.
- ¹³C, ¹⁵N標識したタンパク質と三重共鳴用のNMR分光計.
- 磁場を変えて測定するとより良い結果が得られる.

TopSpin標準装備のpseudo 3Dのパルスプログラム

パルスプログラムとパラメータセット

¹⁵ N <i>T</i> ₁	: hsqct1etf3gpsi3d	(HSQCT1ETF3GPSI3D)
¹⁵ N <i>T</i> ₂	: hsqct2etf3gpsi3d	(HSQCT2ETF3GPSI3D)
Hetero NOE	: hsqcnoef3gpsi3d	(HSQCNOEF3GPSI (interleave 2D版))

簡単なセットアップ手順:

- パラメータセットを読み込む.
- "getprosol"でパルス長とパルスパワーを設定.
- 必要に応じてd1を長くする(1秒間では不十分.5秒間程度必要かも)
- "rga"でレシーバゲインを調整して測定.

¹H-¹⁵N HSQCベースのPseudo 3D実験

- Pseudo 2D実験を用いた¹⁵N直接観測ではシグナルの分離が不十分.
- HSQCベースの¹H-¹⁵N相関実験の方が分離能および測定感度が高い.

¹⁵N $T_1 \ge T_2$ のPseudo 3D実験とパルスシーケンス

hetero NOE実験とパルスシーケンス

hetero NOE: 主鎖アミドの¹H核を飽和し、そこから¹⁵N核へのNOEを観測する.

飽和パルス off / on の2つの2Dを一つの 実験として測定 (pseudo 3D測定).

T₁, T₂, hetero NOEの結果と回転相関時間

回転相関時間τ:分子の回転運動(回転拡散)の速さの目安.

 τ が大きい. \rightarrow 回転が遅い. \rightarrow 分子量が大きい,構造的に固い.

٠

Kechari KR. and Wilson DM., *Chem. Soc. Rev.*, 2014, 43, 1627-59

• {¹H}-¹⁵N hetero NOE

Grzesiek S., EMBO practical course, 2005

 T_1/T_2 (R_2/R_1)の値と, NOEの値はそれぞれ回転相関時間に関係している. 例:構造的に柔らかい部分 $\rightarrow T_1/T_2$, NOEの値が小さくなる.

タンパク質の構造と T_1/T_2 , hetero NOEの値

転写コアクチベーターSHARPのSPOCドメイン(青)と リン酸化SMRTペプチド(緑)の複合体の溶液構造 (Mikami S., et al, *Structure*, 2014, 22, 35-46)

複合体中のペプチド部分の緩和解析結果

モデルフリー解析による主鎖ダイナミクスの解析

モデルフリー解析の概念

ダイナミクス解析の手順.

最初に仮定した物理モデルが正しいとは限らない.

モデルフリー解析では具体的な物理モデルに依らない,一般化されたスペクトル 密度関数を使用.内部運動を揺らぎの大きさ(S²)と,速さの目安 (τ_e)で表す.

解析から得られるパラメータ

モデルフリー解析では R_1 , R_2 , NOEの値から, S^2 , τ_e (と R_{ex})が得られる.

• Order parameter S²

0から1の値を取り、内部運動の揺らぎの大きさの指標にすることが出来る.

Ishima M. and Torchia DA., *Nat. Struct. Biol.*, 2000, 9, 740-3

Effective correlation time τ_e
 内部運動の回転相関時間.速さの目安になる.

Lipari G. and Szabo A., *J. Am. Chem. Soc.*, 1982, 104, 4546–59 Clore GM., et al, *Biochemistry*, 1990, 29, 7387-7401 Clore GM., et al, *J. Am. Chem. Soc.*, 1990, 112, 4989-991

S²の値が大きい:

内部運動が小さい

*S*²の値が小さい:

内部運動が大きい.

タンパク質の立体構造とオーダーパラメータ

Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Michelle LG., Byrd RA. and Palmer AG. III, Phys. Chem. Chem. Phys. 2015

最終的には S^2 や τ_e の値を求めたい.

実験値*T*₁, *T*₂, NOEの値から

- Reduced spectral density : J(0), $J(\omega_N)$, $J(0.87\omega_H)$
- Global isotropic correlation time : τ_c (τ_m)
- Diffusion tensor : $D_{\parallel}D_{\perp}$

を計算し、フィッティングを行う.

Reduced spectral densities $J(0), J(\omega_N), J(0.87\omega_H)$

 $R_1, R_2, NOEの値をスペクトル密度関数で表すと$

۔

Abragam A., The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961

$$R_{1} = R^{1}_{DD} + R^{1}_{CSA}$$

$$= (d^{2}/4)[J(\omega_{H}-\omega_{N})+3J(\omega_{N})+6J(\omega_{H}+\omega_{N})]+c^{2}J(\omega_{N})$$

$$R_{2} = R^{2}_{DD} + R^{2}_{CSA}(+R_{ex})$$

$$= (d^{2}/8)[4J(0)+J(\omega_{H}-\omega_{N})+3J(\omega_{N})+6J(\omega_{H})+6J(\omega_{H}+\omega_{N})]+(c^{2}/6)[3J(\omega_{H})+4J(0)]$$
NOE = 1+(d^{2}/4)(\gamma_{H}/\gamma_{N})[6J(\omega_{H}+\omega_{N})-J(\omega_{H}-\omega_{N})]T_{1}
$$I(\omega_{H}-\omega_{N}), J(\omega_{H}+\omega_{N}) \not \in J(\omega_{H}) \not \in ifk$$
Farrow NA., et al, *Biochemistry*, 1995, 34, 868-78
$$J(\omega_{H}) = (4/5d^{2})(\gamma_{N}/\gamma_{H})(NOE-1)R_{1}$$

$$J(\omega_{N}) = \{R_{1}-(7/4)d^{2}J(\omega_{H})\}/\{(3d^{2}/4)+c^{2}\}$$

$$J(0) = \{R_{2}-(3d^{2}/8 + c^{2}/2)J(\omega_{N})-(13d^{2}/8)J(\omega_{H})\}/(d^{2}/2+2c^{2}/3)$$

※J(0.87ω_H)はNOEの式の 6J(ω_H+ω_N)-J(ω_H-ω_N) から. Farrow NA., et al, *J. Biomol. NMR*, 1995, 6, 153-62

 $R_1, R_2, \text{NOEの値からO, } \omega_N, (0.87) \omega_H$ におけるスペクトル密度関数の値を計算.

Global isotropic correlation time と Diffusion tensor

Global isotropic correlation time : τ_c

分子全体の回転相関時間. 各残基の*T*₁, *T*₂の値から回転相関時間を計算し, その平均値になる. (*T*₂が小さい残基と, NOEの値が小さい残基は計算から除外)

• フィッティングから計算 ($J(\omega_i) = S^2 \tau_m / [1 + \omega_i \tau_m]$ を使って T_1 / T_2 を表す)

(Kay LE., et al, *Biochemistry*, 1989, 28, 8972-9)

• T_1/T_2 の値から計算 ($\tau_c = 1/(2\omega_N) \times \{(6T_1/T_2)-7\}^{1/2}$)

(Fushman D., et al, J. Biomol. NMR., 1994, 1, 61-78)

• Diffusion tensor : $D_{\parallel}D_{\perp}$

分子の回転運動が異方的な場合, 各アミノ酸残基の τ_cを計算するときに使用.

*T*₁, *T*₂の値を基に計算される.

(Fushman D., BioNMR in Drug Resaerch, 294)

フィッティングに用いるモデル

Protein Dynamicsのモデルフリー解析でフィッティングに用いる数学的モデル.

- Isotropic tumbling 球状タンパク質(D_{II}D₁≤ 1.2)に適用する.
 (*M*1-*M*5)
- Anisotropic tumbling 球状ではないタンパク質に適用($D_{\parallel}D_{\perp} > 1.2$). 構造情報(PDB file)と $D_{\parallel}D_{\perp}$ を使用して τ_{c} を計算. (*TM*1-*TM*5)

緩和測定の実験値

フィッティングパラメータ

それぞれのモデル(M1-M5, TM1-TM5)についてフィッティングを行い, 各アミノ酸残基の S^2 , τ_e を算出する. 最後にモデルの評価を行い, どのモデルを採用するかを考察する.

pseudo 3D の処理

- pseudo 3D測定のプロセスはTopSpinで行う.
 - ① ftndコマンドでF3方向の処理を行う.
 - 2 ftndコマンドでF2方向の処理を行う.
 - ③ プロセスが完了.F1方向(緩和ブロックの展開に対応)の処理は行わない.

1	2	3
<pre> ftnd Enter direction(s): (3, 1 for F3, F1 or 0, 321, 312 for all 0 = all directions according to AQSEQ) B OK Cancel </pre>	<pre> ftnd Enter direction(s): (3, 1 for F3, F1 or 0, 321, 312 for all 0 = all directions according to AQSEQ) 2 OK Cancel </pre>	
		緩和ブロック 10 9 8 7 F3 [ppm] 1H

• 続いてProtein Dynamics を立ち上げ, 解析を行う.

T₁, T₂, hetero NOEの解析

Protein Dynamicsを用いた解析:フローに従って情報を入力

• Sample:サンプル情報の入力.

アミノ酸配列ファイル(.fasta), <u>構造ファイル(.pdb)</u>

• Data: プロセスファイル(3rrr)やピークリストの場所を入力.

ピークリストは.xmlファイル(TopSpin形式)の他, .peaksファイルを 読み込むことが出来る.

実際のスペクトルに合わせてピーク位置の自動調整が可能.

- Analysis: フィッティングやエラーを付ける方法を選択.
- View:表示項目の選択.
- Report: 結果のPDFファイルを作成.
- Export: 結果の数値データのエクセルファイルを作成.

※手順の詳細は補足スライド参照

T_1 , T_2 , hetero NOEの解析

¹⁵Nラベルの Thioredoxinを用いた解析結果.

サンプル提供:大阪大学蛋白質研究所服部博士,古板博士,児嶋准教授

先ほど得られたNOE/T₁/T₂の結果を用いて主鎖のモデルフリー解析を行う.

Data : hetero NOE, T₁, T₂解析の.projectファイルを指定.

異なる磁場強度で測定したデータを同時に扱うことが出来る. フィッティングパラメータが増えるM4, M5やanisotropic tumbling を 採用する場合に特に重要になる.

- Analysis:フィッティング回数,条件を選択.
- View:表示項目の選択.

構造上への結果のマッピングのon/off等.

Report: 結果のPDFファイルを作成.

AIC値等によるモデルの評価を行う.

• Export: 結果の数値データのエクセルファイルを作成.

※手順の詳細は補足スライド参照

計算を実行する.

1	Info T1/T2 ratios for peaks calculated at field strength 600.130 MHz C:\Bruker\TopSpin3.2\data\tk1\nmr\relax_webinar\2\pdata\1\3rrr has 78 relev C:\Bruker\TopSpin3.2\data\tk1\nmr\relax_webinar\3\pdata\1\3rrr has 78 relev Commonly identified by name are 78 peaks. Used for T1/T2 calculations are 41 peaks.	ant peaks. ant peaks.
	Summary Info Isotropic overall correlation time calculated with different methods: (field strength 600.130 MHz) Average over 41 residues, tc estimated from T1/T2 : 6.1e-09 s [e.g. Fushman et al., J. Biomol. NMR, 4, 2160221, (1994)] Average over 41 residues, tc obtained from fit : 6.1e-09 s [e.g. Kay et al., Biochemstry, Vol. 28, No.23, 8972-8979 (1989)] Diffusion tensor estimation from high frequency corrected R2, R1 values D / D_ calculated as : 1.17 [e.g. BioNMR in Drug Research, Wiley-VCH, p. 296, (2002)]	は と 示 可 合 推
		1

はじめにOverall correlation time τ_c とDiffusion tensor の計算結果が表 示される.

Diffusion tensor が1.2より大きい場 合はanisotropic tumblingの使用を 推奨.

各残基の S^2 , τ_e , R_{ex} が計算される. 図ではM2: $S^2 \ge T_1/T_2$ のヒストグラムを表示.

分子構造へのマッピング. 青→白→赤の順で値の大きさを示す. (灰色はプロリンなど帰属が無い残基)

Report – モデルの評価

最後にフィッティングモデルの検証を行う

ReportのPDFファイル内にフィッティングモデルに関する評価が記述されている.

			_	-220		AIC $(= \chi^2 + 2k;$
xtra random sta	art parameter	500				χ: 緩和ハラメータの計算値と美測値の k: フィッティングパラメータの個数)
r each modellin are marked if ba bare to experim	ig: ick-calculated ental values	2.00 %				/ AICが小さいと、計算値と実測値が 良く一致していることを表す
AIC/M1	AIC/M2	AIC/M3	AIC/M4	AIC/M5		
9.39	5.12	10.5 *	6.00 *	-		
19.6	6.35	20.0 *	6.00 *			*7-7
272	4.45	-			-	
4./8	-	4.00 *	6.00 *		-	- R. R.の計算値が実測値とよく-
10.2	4.30	11.9 *	6.00 *		-	
39.3*	4.01 *	-	6.00 *		1	していることを表す.
167	4.83	169 *	6.00 *	12		
た日5	安に及	まごと	أنلجيا	のモデル	しを	いにくいため、AICが大きくても
	xtra random sta r each modellin are marked if ba bare to experim NOE error calcu AIC/M1 9.39 19.6 272 4.78 17.5* 10.2 39.3* 167 210	xtra random start parameter r each modelling: are marked if back-calculated pare to experimental values NOE error calculation: NOE error calculation: 19.6 9.39 5.12 19.6 272 4.45 4.78 17.5* 4.36 10.2 39.3* 167 4.83 210 5.61	xtra random start parameter r each modelling: 500 are marked if back-calculated bare to experimental values 2.00 % NOE error calculation: as obtained f NOE error calculation: as obtained f 10.6 6.35 20.0 * 272 4.45 - 4.78 - 4.00 * 17.5* 4.36 19.4 * 10.2 4.33 169 * 39.3* 4.0 * - 167 4.83 169 * 210 5.61 742 +44 - *	xtra random start parameter 500 r each modelling: 2.00 % are marked if back-calculated pare to experimental values 2.00 % NOE error calculation: as obtained from experimental values NOE error calculation: as obtained from experimental values 19.6 6.35 20.0 * 19.6 6.35 20.0 * 19.6 6.35 20.0 * 17.5* 4.36 19.4 * 10.2 4.36 19.4 * 39.3* 4.4 * - 167 4.83 169 * 167 5.81 - 210 5.81 -	xtra random start parameter r each modelling: 500 are marked if back-calculated bare to experimental values 2.00 % NOE error calculation: as obtained from experimental errors and fit NOE error calculation: as obtained from experimental errors and fit 10.6 6.35 20.0 * 19.6 6.35 20.0 * 19.6 6.35 20.0 * 17.5* 4.36 19.4 * 10.2 4.38 11.9 * 10.2 4.33 169 * 167 4.83 169 * 167 5.61 16.00 *	xtra random start parameter r each modelling: 500 are marked if back-calculated pare to experimental values 2.00 % NOE error calculation: as obtained from experimental errors and fit NOE error calculation: as obtained from experimental errors and fit 19.6 6.35 20.0 * 6.00 * - 19.6 6.35 20.0 * 6.00 * - 17.5* 4.36 19.4 * 6.00 * - 10.2 4.38 11.9 * 6.00 * - 10.2 4.33 11.9 * 6.00 * - 10.7 4.83 169 * 6.00 * - 10.7 4.83 169 * 6.00 * -

まとめ

- Dynamics Centerを用いて簡便に解析できた.
 - General Dynamicsでは*T*₁緩和時間および拡散係数の解析例を示した.
 - Protein Dynamicsではタンパク質のダイナミクスの解析例を示した.
- NMRによるダイナミクスの解析は、有機化合物、タンパク質、固体材料など幅広い分野において活用されている。
 - Dynamics Centerは簡便な操作でありながら多彩なオプションをもって測定データを分析する ことができるため、ダイナミクス解析において強力なツールとなる.

ご清聴ありがとうございました!

www.bruker.com

Bruker **BioSpin**

Q & A

Any questions?

Please type any questions you may have for our speakers in the Q&A panel and click Send.

How did we do?

Shortly after the webinar, you will receive our evaluation survey, please fill it to let us know. We appreciate your feedback.

Thank you!

BRUKER

tidelay (Ci¥Bruker¥... Karaker¥...

1 0.001 2 0.050 3 0.100

4 0.200 5 0.300

6 0.500 7 0.800

8 1 9 1.5

10 2

$T_1 - VDJAF$

- 標準パラメータセットPROTONT1には標準のVDリストが設定されている.
 - ① AcquParsタブをクリックする
 - ② Listsというリンクをクリックする
 - ③ VDLISTにt1delayというファイルが設定されている
 - ④ Eボタンをクリックして, リストの中身を確認する
 - 5 td(F1)の数とリストの行数を一致させる.

Spectrum ProcF	Pars AcquPars	Title	PulseProg	Peaks	Integrals	Sample	Struct	ι
տ Л S 🕇 🖽 1	⊻ C A (1)		Pro	obe: no	ot define	d		
Experiment	 Lists 							
Width	FQLIST		Edit	t				
Nucleus	VALIST						E	
Durations	VCLIST						E	
Power	VDLIST	3	t1delay				E	(4
Program	VPLIST						E	
Probe	PHLIST						E	
	VTLIST						E	

			12 13 14 15 16 17	3 3.5 4 4.5 5 4	-
rs AcquPars Title	PulseProg	Peaks	Integrals	Sample	Structu
V C 🖏	Pro	obe: no	ot define	d	
	F2	2		F1	
 Experiment 					
PULPROG	t1ir				E
AQ_mod	DQD		•		
Intype	traditional(p	lanes)			-
⁻ nMODE			undefi	ned	-
ſD	16384		16 🤇	5	

*T*₁ - VDリストの作り方

- 1 AcquParsタブをクリック
- 2 Listsをクリック
- ③ VDLISTに新規に名前(たとえば, webinar_t1)を入力する
- 4 Eボタンをクリックする
- 5 エディターが起動するので、数値を入力する. 単位は秒.

Spectrum ProcF	ars AcquPars T	ītle	PulseProg Peaks In	tegrals	Sample	Struct	ur
n I S I II 12. V C A U Probe: not defined							
Experiment	 Lists 		•				
Width	FQLIST		Edit]			
Nucleus	VALIST					E	
Durations	VCLIST					E	
Power	VDLIST (3	webinar_t1			E	4
Program	VPLIST					E	
Probe	PHLIST					E	
Lists 💋	VTLIST				-	E	

*T*₂ - VCリストの作り方

- ① AcquParsタブをクリック
- 2 Listsをクリック

Experiment Width Receiver Nucleus Durations Power Program Probe

_ists (🖊)

- ③ VCLISTに新規に名前(たとえば, webinar_t2)を入力する
- ④ Eボタンをクリックする

VTLIST

- 5 エディターが起動するので、数値を入力する、単位は回、
- 6 td(F1)の数とリストの行数を一致させる.

Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Struct

12	<_ ▼ C ∰ ①		Probe: not	defined			C 🚜	
t	⊘ Lists							
	FQLIST		Edit				 Experiment 	
	VALIST				 Ε		PULPROG	
	VCLIST	3	webinar_t2		 Ε	4	AQ_mod	
	VDLIST				 Ε		FnTYPE	
	VPLIST				 Ε		FnMODE	
	PHLIST				 Ε		TD	

Pars AcquPars Title	PulseProg Peaks In	tegrals Sample Structu
V C 🆓	Probe: not	defined
	F2	F1
 Experiment 		
PULPROG	cpmg	E
AQ_mod	DQD -	
FnTYPE	traditional(planes)	·
FnMODE		QF •
TD	65536	8 (6)

TopSpinを用いた T_2 の解析には、VCリストをもとにVDリストを作成しておく必要があったが、 Dynamics Centerを用いた T_2 の解析では、VDリストを計算しておく必要はない.

Е

2Dスペクトルのシリーズ vs Pseudo 3D

- 空調などによりハードウェアの環境が変化して しまう可能性がある.
- 各実験ごとに処理を行う必要がある. 位相補正
 やベースラインが異なってしまう恐れがある.
- 一つのデータセットとして処理ができる。

¹⁵N T₁測定でのVDリストの作成

1. 測定のAcquParsタブを選択し、lists内のVDLISTの欄に新規のリストの名前を入力し、 E をクリック.

 Lists 		
FQLIST	Edit	Irradiation frequency lists
VALIST		E Variable amplitude (power) list
VCLIST		E Variable counter list
VDLIST	15N_T1	E Variable delay list
VPLIST		E Variable pulse list
PHLIST		E Variable phase list
VTLIST		E Variable temperature list

2. VD listを作成し, Save.

3. AcquParsのTD1とNBLをVDリストの行数の値にする.

DUILDDOC	beget1otf2gpci2d			Current pulse program
PULPROG	nsqctrettogpstou		[]E	Current puise program
AQ_mod	DQD 🔻			Acquisition mode
FnMODE		Echo-Antiecho -	QF 🔻	Acquisition mode for 2D, 3D etc.
FnTYPE	traditional(planes)		-	nD acquisition mode for 3D etc.
TD	2048	128	12	Size of fid
DS	16			Number of dummy scans
NS	4			Number of scans
TD0	1			Loop count for 'td0'

🖕 NBL	0.40	X
Number of bloc	cks (of acquisi	tion memory
NBL 12		
	OK	Cancel

¹⁵N T₂測定でのVCリストの作成

VCリストの作成手順はT₁のVDリストの作り方とほぼ同じ(VCLISTの項目を選択して作成). TDやNBLの設定も同様にVCリストの行数と同じ値を入力.

補足

パルスプログラム(hsqct2etf3gpsi3d)の下の部分がCPMGのパルス(緩和ブロック)になる。

6 d21
(p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6):f3
DELTA3
(p44:sp30 ph1)
DELTA3
(p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6):f3
d21*2
(p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6 d21*2 p30 ph6):f3
DELTA3
(p44:sp30 pn8)
UELTA3
(p30 pri6 d21*2 p30 pri6 d21*2 p30 pri6 d21*2 p30 pri6).13
IO TO O TIMES COUNTER

デフォルトの設定ではCPMG 1ブロックの長さは 16.96 msecになり, VCリストの数字はCPMGの繰り返し回数になる. 増やしすぎると発熱が生じる恐れがあるために注意する. 最大16で十分.

Protein Dynamicsの操作の補足

T_1 , T_2 , hetero NOEの解析

- Dynamics center を立ち上げる.
- T2 (T1, hetero nOe)を選択する.
- フローに従って情報を入力し、解析を行う.

Sample - サンプル情報の入力

サンプル情報を入力する.

Samp	le/Protein name	ubiquitine
		standard demo sample
Descr	iption/Title	
Origin	i	in-house
Date	of preparation	06 / 2005

- General
 - サンプル名など
- Preparation

緩衝液, nmrチューブの条件

• Properties

サンプルの情報(濃度,分子量等)

AA sequences

アミノ酸配列ファイル (.seq, .fasta)

MQIFVKTLTGKT...

• Structure

構造ファイル (.pdb). モデルフリー解析で構造 情報を使用する場合に指定. Anisotropic tumblingを用いる場合は¹Hの情報が必要.

測定データの指定.

標準のpseudo 3Dのパルスプログラムを用いた場合

s
:1\nmr\relax_webinar\3\pdata\1\3rrr
プロセスディレクトリの3rrrを指定.
^{c. \data\gut} ディレイの情報は自動で読み込まれる
t

ー連の2D測定として解析する場合

Select Data for T2 method		×	
Spectra Peaks Integrals Lists			
Select spectra type pseudo 3D (N planes) 2D spectra	それぞれの2	Dデータとディレイを入っ	ታ
pseudo 3D spectrum	:1\nmr\relax_webinar\3\pdata\1\3rrr browse		
number of spectra	8	Time [s]	
2D spectrum 1	\tk1\nmr\relax_webinar\11\pdata\1½ browse	0.000	
2D spectrum 2	\tk1\nmr\relax_webinar\12\pdata\1\{ browse	0.050	
2D spectrum 3	\tk1\nmr\relax_webinar\13\pdata\11{ browse	0.100	
2D spectrum 4	\tk1\nmr\relax_webinar\14\pdata\11. browse	0.150	
2D spectrum 5	\tk1\nmr\relax_webinar\15\pdata\1\c_browse	0.200	

自作のpseudo 3Dのパルスシーケンスを用いた場合のデータの読み込みについて.

Protein Dynamics はF1を実数としてpseudo 3Dのデータを読み込む. → F1でvd (vc)の展開を行っていれば, 自作のパルスでもpseudo 3Dとして読み込む ことが出来る.

tra Peaks Integrals Lists		
When using Bruker pulse programs a volist exists a	at	
spectrum level. It will then be converted into a vdl	ist	
using the following parameters.		
enter number of mixing times	16	_
enter loop duration	0.01696	
	0.01030	ſ
enter constant duration	0.0	s
In case of available repetition experiments one or	more Time	
values occur more than once.		
Select list processing	-	
use all Time values in list		
nean replace intensities/integrals of identical Time values		
Available repetition experiments can also be used t	to estimate	
systematic errors in the data. Peak intensities/inte	grals are compared.	
Select error calculation method		
systematic error from variance averaging		
systematic error from worst case estimate per peak		

vcを用いている場合1 blockあたりの時間を 入力する. (標準のT₂測定のパルスだとCPMG 1 block が16.96 msecとなる. これが初期値として 入力されているため, 設定の必要はない.)

کر : Sp

ピークリストの読み込み.

Peaksタブを選択し, ピークピックの方法や, ピークリストを読み込む かどうか, 読み込む際の オプションを指定.

KS Integrais Lists		
Select peak type		
fully automated peak picking		
o use peak list at spectrum (peaklist.xml)		
use any other pseudo 3D or 2D peak list (peaklist.xml)		
O threshold based peak picking		
use all columns above threshold		
just keep currently available peaks		
Peak list file	k1\nmr\relax_webinner\peaklis	t.xml browse
Select snap type		
💿 no peak snap		
snap using global+local shift analysis		
snap using a local neighbor search		
Snap to first spectrum/plane then copy to others		
Import assignments		
No import		
from BMRB file containing assignments		
from XEASY peak list.		
Assignment from file	222	browse
na la different en etc. (alema terre) en el	tababa abits astastas	
Peaks in different spectra (planes, traces) may si	ignuy shirt relative	
to each other. The shifts are expected within a se	earch radius epsilon.	
Select epsilon unit		
C cpanon given in ppin		
peak epsilon in F1	3.0	
peak epsilon in F2	3.0	
		OK Cancel

ピークリストの読み込み.

TopSpin形式のリストファイル(.xml)を読み込む場合

ピークリストの読み込み.

XEASY形式(.peaks)のファイルを読み込む

# Number of dir	mensions 2						
1 104. 3127	9. 5146 1 -	0. 000E00	0. 000E00 -	0	0	0	0
# G84							
2 107. 9689	8. 0696 1 -	0. 000E00	0. 000E00 -	0	0	0	0
# T8							
3 108. 5314	8. 0422 1 -	0. 000E00	0. 000E00 -	0	0	0	0
# G21							
4 108. 5314	7. 5559 1 -	0. 000E00	0. 000E00 -	0	0	0	0
# G/4 🔶 🗕		Note)[帰屋を書く				

ピークピックの時に .peaksファイルから 帰属を移すことが出来る.

ピークピックを選択し, import assignments で.peaksファイルの場所を指定

Select peak type

- fully automated peak picking
- use peak list at spectrum (peaklist.xml)
- o use any other pseudo 3D or 2D peak list (peaklist.xml)
- threshold based peak picking
- use all columns above threshold
- O do manual peak picking later

- Import assignments No import from BMRB file containing assignments from XEASY peak list Assignment from file ata\tk1\nmr\relax_webinar\Trx.peak browse
 - しかし、リストにないピークについても自動でピックされてしまう...

TopSpinで.peaksファイルを読み込み,.xmlファイルを作成することも可能.

Data - データの入力

TopSpinで.peaksファイルを読み込む.

Peaksタブをクリック	
Spectrum Process or peak file available Please perform manual or automatic peak tacking first. Import Import Acquire Please perform manual or automatic peak tacking first. Import Import Spectrum Import Import Import Spectrum Import Import Spectrum Import Import Spectrum Import Import Spectrum Spectrum Import Spectrum	

	V(F2) [ppm]	v(F1) (ppm) Inte	ensity (atra)	2) 2)	Annotation
59	7 2272	114.7188	0.00	¥70	
19	8.7065	115.2813	0.00	Y49	
74	6.4533	111 0626	0.00	W31	
33	8.5490	120 6249	0.00	W28	
27	8.5353	125.6873	0.00	V91	
22	8 7270	122 5936	0.00	V86	
.7	9.9530	130.1872	0.00	V55	
9	9.6722	126.8123	0.00	V25	
57	7.4806	113.0313	0.00	V16	
35	8.4325	115 2813	0.00	T89	
2	8.0696	107 9689	0.00	T8	
50	7.7819	118.9375	0.00	T66	
43	8.0011	123.4374	0.00	T54	
56	7.6860	112.4688	0.00	T14	
41	8.2476	127 0935	0.00	R73	
52	7.6175	120 6249	0.00	Q98	
69	7.0217	121.4687	0.00	Q50	
17	9 3023	123.7186	0.00	N83	
61	7.3094	116.1250	0.00	N63	
16	8.9120	126.2498	0.00	N59	
58	7.1792	113.3126	0.00	N106	
29	8 4599	123.4374	0.00	L99	
68	6.7409	119.4999	0.00	L94	
34	8.7133	125.1248	0.00	L80	
15	8.8709	121 1874	0.00	L79	
12	9.0147	126 6311	0.00	178	
Spet	Irum ProtPars	AcquPars Title Pol	seProg Peak	s integrats Sample Structure Plot Fid Acqu	N- ₹
Spel	drum ProtPars	AcquPars Title Pu	IseProg Pear	s megrats Sample, structure Piot Fild Acqu)	Tudd) 13
Spei	Irum ProtPars	AcquPars Title Pu	IseProg Peak	s megrats Sample, structure Pot Fid Acqu def Bot Bot eff eff eff eff eff eff eff ef	Ind I a
Spei	ProcPars	AcquPars Title Pu	GeProg Peak	s megrais Sample, structure Piot Piot Acqu cos7 021 8721 cos 075 eW91	line Filmer
Spec	from ProcPars	AcguPars Title Pu	GeProg Peak	s megrats Sample, structure Pot Pid Acqu) 6.097 B21 677 COS 6.097 6.097 6.097 6.097 6.097 6.097	[mdd] is oil o
Spec	drum ProcPars	AcguPars Title Pu	(SeProg Peak	s megras Sample, structure Pot Pid Acqu) 007 007 007 007 007 007 007 00	[uud] 13 011 911
Spet	drum ProcPars	AcquPars Title Pu	(SeProg Peak	s megrals Sample Structure Pool Pia Acqu) 6.097 0.027 0.025 0.027 0.025 0.027 0.0	[mdd] 14 011 911
Sper	drum ProcPars	AsquPars fills Pu	(seProg Peak	s megnals Sample, structure Pot Pid Acqu) 	Ine 110 F1 (part
Spet	drum ProsPars	AcquPars 118; Pu	iseProg Peak	s megras Sample, Structure Pot Pid Acqu)	fundel 13 Oli Sili
Spet	drum ProtPars	AsquPara [106] Pu	seProg Peak	s megrats Sample, structure Pol Pia Acqu) 6097 B21, 677 COS VO1 075, 074 VO1 075, 074 VO1 075, 075 VO1 075, 075 075, 075, 075 075, 075, 075 075, 075, 075, 075, 075, 075, 075, 075,	110 F1 (part)
Spet	num ProsPars	AcquPara [108] Pu	6997rog Pesa	ST Integrals (Sample, Structure, Piot) Piot (Piot) Piot 057 055 055 055 055 055 055 055 055 055	120 116 110 F1 [pm]
Spet	hum ProcPare	Acquerans [Title] Eu	seProg Pear	s I megnals (Sample, I structure) (Pol (Pia Acqu) 697 005 005 007 005 007 005 007 007	110 11 511 021
Spet	hun <u>ProtPars</u>	Acquerans Title Pu	660 C	S megnas Sample, structure Pot Pid Acqu) 0077 0021 077 0025 0991 0056 00	Find 11 011 511 021
Spec	hum <u>BocPars</u>	Acquerans [1106] Eu	eserrog Pear	s I megnals (Sample) structure Pixt Pixt Pixt Argo) 	feedal 1 011 011 021 021
Spel	hun <u>Post</u> ars	Acquerans [Title] Pu	e Ger	s I megnals (Sample) structure Pixt Pixt Pixt Acqu) 097 B21 677 005 W01 005 W01	fuedd 13 011 011 021 521
Spec	hun <u>Boothars</u>	AcouPars [1186] Pu	6eProg Pear	ST Integrals (Sample, Estructure) (Port) Piat (Acqu) 007 007 007 007 007 007 007 00	fuedd 14 011 911 021 521
Spec	hun <u>PostPars</u>	Arquevars [Title] Eu	64Prog P68	s I Integrals Sample, Structure Pixt Pixt Pixt Acqu) 6097 005 005 005 005 005 005 005 00	luddita ott sti
Spec	hun <u>Boothas</u>	Acquerans [Title] Pu	eeProg Pean	S megnals Sample, structure Pixt Pixt Pixt Acqu) 097 007 007 007 007 007 007 007	100 110 111 011 021 00
Spec	hon PostPars	Acquerans [Trite] Eu	6eProg Pear	s I Integrals (Sample) Structure Pixt Pixt Pixt Acqu) 	[med] 13 011 011 011 021 021
5 Spec	hun <u>Post</u> ars	Arguevans [Title] Pu	6997rog Peer	s I megnals / Sample / Structure / Pixi / Pial / Acqu) 0097 0097 0097 0097 0097 0095 0090	fuedd 13 011 011 021 021 021
Spec	hon PoorPars	AcouPars [Title] Pu	66Prog P66P	SI Integrals (Sample, Estructure) (Port) Piat (Acqu) 0007 0007 0007 0007 00000 0000 0000	
Spec	hun <u>PostPars</u>	Arguevans Title Eu	Gerrog Peer	s I Integrals Sample, Structure Pixt Pixt Pixt Acqu) 6097 1007	luddita ott sti oct s

.xml ファイルが自動で作成される

Data – データの入力

スペクトルと帰属が読み込まれる.

Data - データの入力

ピーク位置の調整.

ずれているピーク上で右クリックし、 プルダ ウンメニューの Move this peak

ドラッグしてピークを動かして調整.

Analysis - 解析

Analysisから演算を開始する.

ピークピックした信号に対して演算が行われる.

View - 結果の表示

結果を表示する

View - 結果の表示

結果が表示される.マウスで選択したピークについての結果がハイライトされる.

Report, Export - 結果の出力

Exportから詳細な数値
データのエクセルファイル
を作成することが可能.

	A	В	С	D	E	F	G	Н	
1	Peak name	F1 [ppm]	F2 [ppm]	T2 [s]	error	errorScale	R2 [rad/s]	R2 sd [rad/s]	
2	G84	104.1721046	9.511212307	0.106078026	0.015471676	2.144786688	9.427023112	0.641065476	
3	T8	107.8282855	8.066136184	0.126305448	0.003709831	2.144786688	7.917314868	0.108424111	
4	G21	108.3907749	8.038741376	0.241163539	0.009200057	2.144786688	4.146563799	0.073753582	
5	G74	108.3907749	7.552483534	0.172639734	0.00846428	2.144786688	5.79240931	0.132411104	
6	G71	107.8282855	7.429206898	0.110716054	0.008949451	2.144786688	9.032113817	0.340401205	
7	G65	112.3282005	10.1823851	0.128940947	0.005440725	2.144786688	7.755488264	0.152577656	
8	V55	130.0466158	9.956377937	0.131966348	0.003126371	2.144786688	7.577689442	0.083700887	
9	F81	128.077903	9.915285725	0.139655512	0.007962844	2.144786688	7.160476428	0.190356608	
10	V25	126.6716796	9.675581155	0.131905345	0.00548454	2.144786688	7.581193898	0.146970879	
11	A67	123.8592327	9.682429857	0.125028072	0.005669092	2.144786688	7.998203815	0.169088588	
12	K90	125.2654561	8.970164849	0.114925769	0.013513045	2.144786688	8.701268694	0.477017467	
13	L78	126.3904349	9.024954465	0.119850037	0.003562986	2.144786688	8.343760438	0.115652143	
14	L24	130.6091052	9.141382399	0.122700959	0.002853314	2.144786688	8.149895542	0.088362807	
14	Samp	le Parameter 1	ntegrals / Integral	errors / back ca	alculation from fit	Details Res	ults		
⊐₹	ンド ScrollLo	ock							

projectファイルの保存

T2 (T1, hetero nOe)を右クリックし、 プルダウンメニューからSave又はSave Asを 選択し、 projectファイル (.project)を保存する.

Projectファイルは主鎖運動性のモデルフリー解析を行う際に使用する.

Hetero NOE, T_1 および T_2 の解析結果を用いて 主鎖のモデルフリー解析を行う.

Dataの項からhetero NOE, T_1, T_2 のプロジェクトファイルを指定する.

異なる複数の磁場強度で測定を行う事で、より確かな解析が可能になり、 そのようなデータを同時に取り扱うことが可能。

NOE / T_1 / T_2 : 主鎖のモデルフリー解析 Analysis – データの解析

解析パラメータを設定する.

NOE / T_1 / T_2 : 主鎖のモデルフリー解析 Analysis – データの解析

解析パラメータを設定する.

τ_cの計算に用いる残基の
 選定基準を設定する場合は,
 こちらから設定が可能.

NOE / T_1 / T_2 : 主鎖のモデルフリー解析 Analysis – データの解析

解析パラメータを設定する.

モデルフリー解析のフィッティングに使うモデルを選択する.

Isotropic

Anisotropic

96

NOE / *T*₁ / *T*₂ : 主鎖のモデルフリー解析 View – 結果の表示

表示する項目を選択する.(後から変更可能) 初期設定では全項目にチェックが入っている.

Show T1/T2/Sequence histogram
Show R1*R2/Sequence histogram
Show J(0.87wH)/Sequence histogram
Show J(wN)/Sequence histogram
Show J(0)/Sequence histogram
Residues selected via certain NOE, T1, T2
values were used for isotropic TauC
calculation and can be color coded
Color code selected residues

NOE / *T*₁ / *T*₂ : 主鎖のモデルフリー解析 View – 結果の表示

選択した項目が表示される.

