

固体NMRによる多核測定の設定

Webinarの主旨

近年、材料科学の進展により、有機・無機ハイブリッド化合物等が盛んに研究・開発されるようになってきている。

新規化合物を原子レベルで、かつ、多岐にわたる核種から観測 できるNMRは非常に有効な研究手法であり、重要性が高まっ てきている。

目的

固体NMRを有効活用するため、自ら自由自在に核種設定ができるようになる。

Outline

- 1. 有機•無機複合材料
- 2. NMRにおける測定対象核
- 3. 標準サンプル
- 4. プローブスペックシート
 - (読み方と核種変更におけるプローブの設定方法)
- 5. 多核測定の設定を始める前に
- 6. スピン量子数 (/) = ½ 核の設定方法
- 7. スピン量子数 (1) > ½ 核の設定方法

1. 有機•無機複合材料

従来: マイクロレベルでの混合物 (機械的な混合) 例1. 無機物の有機高分子への添加:フィラー 例2. 金属表面の有機高分子での修飾:コーティング

有機高分子または無機物それぞれの物性を反映

近年: ナノレベルでの混合物 (化学反応等による混合) 有機無機ハイブリッド高分子

有機無機ハイブリッド高分子の例

2. NMRにおける測定対象核

			E	의 뷰I	主	: F	ጠ		った日本		友							. [一代表的	りな核種 🗕
н			同别衣工UNNIK 餛別核 He								I = 1/2									
Li	Ве											в	с	N	ο	F	Ne			¹ H ¹³ C
Na	Mg											AI	Si	Р	s	СІ	Ar			¹⁵ N 29 C i
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr		:	³¹ P
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	ı	Xe		/ = 1	/ = 3/2
Cs	Ba	La*	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn		² H ⁶ Li	⁷ Li ¹¹ B
Fr	Ra	Ac*		•	•				•		•	•	•		•	•			¹⁴ N	²³ Na
			La*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		/ = 5/2	³⁹ K ⁸⁷ Rb
			Ac*	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr		¹⁷ O ²⁵ Mg	
			L	1	1						1				I		I		²⁷ AI	⁴⁵ Sc
	──核スピン>1/2 ──核スピン=1/2									/ = 9/2	⁵¹ ∨ ⁵⁹ Co									
			1	>	1/2 -	~75	5%			1	= 1	1/2 ~	-25	5%					⁹³ Nb	

"ednuc"コマンドによる核種の表示

泉 十	亏										周波数
🎃 Nuclei table					×		🤹 Nuclei table				X
△ Nucleus	Name		3C) Spin	Frequency (re	el. 1H)		Nucleus	Name	Recepti	vity (rel. 13C) 🛛 Spin 🤇	Frequency (rel. 1H)
1H H	l 🍓 Nuclei ta					<u>~ 1</u>		ノ国	重于致		426.90122314
2Н С	Nucleus	A Name	ecentivity (r	al 13C) SERV		ole	1				400.23
ЗНе Н	274	Aluminum	Nuclei tr		度 () い し	·) ···	····	x	🗸 🗸 Spin 🚺 I	Frequency (rel. 1H)	376.592460225
3Н Т	121Sh	Antimony		IDIE		·			7	32.5427013 🔺	304.892960705
6Li L	-12100 1235h	Antimony	Nucleus	Name	Receptivity (rel	Spin	Frequency (rel. 1H)		6	39.904167711	230.868024827
7Li L	12000	Arcenic	1H	Hydrogen	5680.0	1/2	400.23	•	5	52.80754689	228.62418336
9Be E	12580	Barium	19F	Fluorine	4730.0	1/2	376.592460225		9/2	97.960975191	162.016073707
10B E	127Ba	Barium	93Nb	Niobium	2740.0	9/2	97.960975191	=	9/2	90.08507315	155.544574733
11B E	3 0Ro	Bondlium	51V	Vanadium	2160.0	7/2	105.27228878	-	9/2	87.700915047	149.248296454
13C C	2008	Bismuth	99Tc	Technetium	2130.0	9/2	90.08507315		9/2	64.314111362	142.610990196
14N N		Boron	115ln	Indium	1890.0	9/2	87.700915047		9/2	87.513311237	130.957073044
15N N		Boron	45Sc	Scandium	1710.0	7/2	97.222859018		9/2	15.39924948	130.950249123
170 0	70Br	Bromino	141Pr	Praseodymi	1650.0	5/2	122.550426		9/2	17.345255791	128.40968914
19F F	01Br	Bromino	59Co	Cobalt	1570.0	7/2	94.96286827		9/2	13.961283125	126.271640469
21Ne N	1110d	Codmium	7Li	Lithium	1540.0	3/2	155.544574733		9/2	10.0737891	122.550426
23Na 5	S 112Cd	Cadmium	27AI	Aluminum	1170.0	5/2	104.287366776		7/2	105.27228878	122.056958419
25Mg N	113Cu	Caumium	165Ho	Holmium	1020.0	7/2	85.409082		7/2	97.222859018	113.680100494
27AI A	43Ca	Calcium	55Mn	Manganese	994.0	5/2	99.213887201		7/2	94.96286827	111.304707428
29Si 5	Silance	Carbon	209Bi	Bismuth	777.0	9/2	64.314111362		7/2	85.409082	108.088186991
31P F	13308	Cesium	205TI	Thallium	769.0	1/2	230.868024827		7/2	56.535052974	106.122877588
33S S	S azol	Chiorine	11B	Boron	754.0	3/2	128.40968914		7/2	52.494735127	105.86843937
35CI 0	5101	Chionne	1271	lodine	530.0	5/2	80.075961218		7/2	47.98597608	105.27228878
37CI 0	5000	Chromium	23Na	Sodium	525.0	3/2	105.86843937		7/2	45.6422292	104.739158407
	5900	Copail	121Sb	Antimony	520.0	5/2	95.777348327		7/2	51.866674199	
	63Cu	Copper	187Re	Rhenium	490.0	5/2	91.05872868		7/2	20.882888761	Save Close
	65CU	Copper	151Eu	Europium	483.0	5/2	99.497178		7/2	21.812535 👻	
		Add/Edit	31P	Phosphorus	377.0	1/2	162.016073707				
			63Cu	Copper	365.0	3/2	106.122877588	Ŧ	Restore	Save Close	
				Add/Edit	Print Delete	Res	tore Save Close	•			_

3. 標準サンプル

パルス長等の決定は固体サンプルが望ましい 【理由】溶液サンプルで求めた90°パルスは、溶媒の性質の影響 を受けたものとなる。そのため、固体サンプルに対しては、不 正確な90°パルスになることがある。

2.1. Setup Samples for Different NMR Sensitive Nuclei

CP

CPMAS

CPMAS

³ Н				
¹ H Silico Silico	ne paste ne rubber	¹ HMAS ¹ HMAS	0	setup proton channel, shim, set field setup proton channel, set field
Adam	antane	¹ HMAS	0	setup proton channel, set field, shim
Glycir Malor	ne nic Acid	CRAMPS CRAMPS	-3 -3	under CRAMPS conditions setup CRAMPS resolution CRAMPS, d1=60s
¹⁹ F PVDF		^{19F} MAS	106	direct observe ¹⁹ F
		CP		CP ¹ H/ ¹⁹ F, ¹ H/ ¹³ C, ¹⁹ F/ ¹³ C (low sensitivity)

-150

-50

0

5ms, 15s

d1>5s, reference sample 12.6/-108 ppm

reference sample 0 ppm

プローブのスペックシートには、プローブを高いパフォーマンスで、安全にご使用いた だくための情報が記述されています。

プローブケースに2枚のスペックシートが同梱されています。

シート① プローブの種類、チューニング領域、レンジスイッチの設定の記述

シート② RFパワーの入力範囲を記述

KA Brider Ba. //293/SS Database Ba. //293/SS Destroion Destroion Costaare We Broke Bagement Versitivite Vac Bit / A. A. A.		TEST REPORT for MAS probes	2	
PROBE [MAS VTN 500SB BL4 15N-31P 19F-1H]		(Alline hung sector positioner) (945) - 455 stad (1909) - 465 se (1935) - 659 sector - 465 secto	К3167 / 0200 Ри мабу/100008 вLa N-9#->1 1293156	
Product is identified by stamped in production Re. 63367 / Ozecoo / 3 My many shade rater to this number. 100 common frequency of the number. W channel: tow end up inspectsphile; nucleus 100 common frequency of the number. W channel: tow end up inspectsphile; nucleus 100 common frequency of the number. W channel: tow end up inspectsphile; nucleus 100 common frequency of the number.		Jackago Gasta <	testingshanike Utomoster, State State Vellege Utologist, Seaturates Caresake 1V OK OK OK	
	保管し	て下さい	11 Signature (mouse)	Keši Atvidari estra (
		Byte Byte <th< th=""><th>Eperty particle 123 137 I 138 117 I I 104 121 100 OK Monte 249,5 275 17 OK Monte Monte 2016 227 X OK Monte Monte Monte</th><th>140</th></th<>	Eperty particle 123 137 I 138 117 I I 104 121 100 OK Monte 249,5 275 17 OK Monte Monte 2016 227 X OK Monte Monte Monte	140
Runge awligh — B6 Jaming — Binnething — 1 Hawding — 1 Hawling — 1		100 2.5 0.6 103 2.5 0.4 0.5 0.4 2055436269 95 3.6 0X	270 137	
Degree stating Light (Light Long (Light) Degree stating Light (Light) This may be an		Notes Probe Rolease YES Notes	Recentry line ow 25kHorts (* X Date 16,12,2011 Signature RAXXE	TW at pro
LOST I <u>8 SOIG</u> OP		FBEN311_1.via	Bruker Elskironik GmbH Stand	1 : 16.12.2

スペックシート①の読み方 ~ プローブの情報~

スペックシート①の読み方 ~ Range Switchのポジション ~

※Range switchの位置がはっきり わからない場合は、wobb画面 を表示し、switchを切り替えて ください。Tuning ディップの位 置が大きく変化しますので切り 替えが容易に確認できます。

スペックシート①の読み方 ~ Wide bore プローブのRange Switchのポジション ~

スペックシート②の読み方 ~ RFパワーの入力範囲~

for MAS protes		NMR - Endte	<u>st</u> (Fille	ed from N	MR - Tes	t person)								
Payle Real Moundary K31817 10200 Printige Types PH MASY/TM020EB BLI N-P/F-1 Old South Col/Dill Triving 1283168		Nucleus	Rifficial	லை	7 Pulso	Poversetting	Power	Steleiliy	Sens	111x16v	9-99 (ED)	over Vett)	U.W 13	817 (HB2)
zerzege dostar Distance Controllador Folder (1990) de la control de la c			(LATE))	(@	(9 0)	((WEIII))	(WE(ii)	1035			pin2	p1205p0	optim	- CIII
Noles				Spec's	passed				Spec's	passed				
Date (Hotor ready for INRE M): 13,12,2011 Signature (Hotoran): Kells		79B7	65	x	n.a.	123	137						140	5
		<u>ୀ</u> ମ	100	2,5	ок	198	177				<u> </u>			
Dpc://processor processor		<u>13</u> C	65	3,8	ок	104	121		100	ок	165/148	160/144		
036 65 3,8 OK 104 721 100 OK testinal testinal <thtestinal< th=""> testinal <thtestinal< th=""></thtestinal<></thtestinal<>		191	55	4,5	ок	249,5	278	i	17	ок	165/148	64/57		1
State 77 3.3 OK 228,6 222 X n.a. t70x84 State State 100 2.6 OK 270 137 L		SUP	75	3,3	ок	208,5	222		х	n.a.	171/154	120/108		
MIS Classification (10) CK (Nonbogiling cw254/b/1/s (111W of probe)		19F	100	2,5	ок	270	137							
Notes		19F-113C CP	65	3,8	ок	100	106		х	n.a.	270/137	170/87		
Probe Release T5 X Date 16,12.2011 NO X RAVE							g ¹⊦	l de	COL	upli	ng _			
FEENS11_1.viz Bruker Einktranik (Imibil Stand .78. 142011) BE B		13C Resolutio	10 (KZ)	<10	ок			Decca	ipling		cw 25	kHz/1s (11W at	probe)

※テーブルの数値が、測定に用いることができるパルス幅とパワ ーの保証上限値です。記述が無い核種につきましては¹³Cの上 限パワーを元に設定して下さい。アーキングや、Amplifier Controlウィンドウに大きなreflectionが出ないように少しづつ必 要なパワーに近づけてください

reflection

6.多核測定の設定を始める前に

~ 測定に応じたパラメーターセットの選択 ~

/= 1/2 と / > 1/2(四極子核)では、設定方法の"コツ"が異なりますので、
 /= 1/2 と / > 1/2 に分けて説明します。

■ 納品時に設定されている¹³Cの測定パラメーターセットから始めてください

測定	¹ H-Decoupling	読み込むパラメーターセット
CPMAS測定	Yes	¹³ C-CPMAS
DDMAS測定	Yes	¹³ C-DDMAS
MAS測定	No	¹³ C-DDMAS

6. スピン量子数 (/) = ½核の設定方法

/=1/2核での注意点

Alanineの¹³C-CPMASスペクトル

- 固体サンプル中の核はT₁が長いものが多い。 → d1を十分に長くとる必要があります (d1 > 5T₁)
- CSA (Chemical Shift Anisotropy)の大きな 核が多く、MAS条件下では多くのスピニン グサイドバンド持ったスペクトルが現われま す。isotropic chemical shiftを見つけるの が困難な場合もあり、一番大きなピークが 必ずしもisotropic chemical shiftではありま せん。
 - ➡ MASの周波数を変えるとisotropic peakは動きませんので、それにより判 断ができます。

/ =1/2核のCPMAS測定

手順	操作
1	¹³ Cファイルの読み込み: ¹³ C-CPMAS
2	edaspで核種の変更
3	プローブのRange Switchを設定
4	o1pを0ppm、または標準サンプルのピーク値に設定
5	d1を求める
6	plw1を求める (CP条件 (Hartmann-Hahn))
\bigcirc	p15を求める (CP条件 (contact time))
8	測定

【例】¹³C → ³¹Pに変更する場合

(1) "edasp"と入力しChannel Routingのウィンドウを立ち上げる (2) F1(観測核)に測定核種を設定

③ Save and Closeボタンで設定を保存し、ウィンドウを閉じる

Tuningのときの注意事項

④ "wbsw"で元の4MHzに戻し、さらに正確にTuning

BRUKER

② sw、o1pを適切な値に設定して下さい。

スペクトルが全体が表示され、中心に来るように調整して下さい

③新しい核種に対してd1、plw1の順に最適化していきます。

多核の設定の際にはd1(recycle delay)にご注意ください。 林種、結晶構造により非常に長いT₁を持つサンプルがあります。 効率よいパラメーター設定作業、及びデータ収集には適切なd1を設定 する必要があります。

十分なd1を設定した場合

poptの使い方

手順	操作
1	ー度測定し、スペクトルの位相を吸収型に合わせます
2	スペクトル上のpoptを用いて表示したい領域を拡大します
3	"dpl"コマンドを入力し、拡大した領域を保存します
4	poptウィンド内のパラメーターを順次入力していきます
5	Saveボタンを押して条件を保存します
6	Start optimizeボタンを押してpoptをスタートします

poptを用いたd1チェック

d1のチェック

新規核種(X)のCP条件の求め方(1)

CP (Hartmann-Hahn)条件

$$\omega_{11} - \omega_{1S} = \pm n \omega_{rot} \ (n = 0, \pm 1, \pm 2, ...)$$

$$\gamma_{\rm I}B_{\rm 1I} = \gamma_{\rm S}B_{\rm 1S}$$

新規核種(X)のCP条件の求め方(2)

 $\gamma_{\rm H}B_{1\rm H} = \gamma_{\rm X}B_{1\rm X}$ (= $\gamma_{\rm C}B_{1\rm C}$)の関係から

 $B_{1X} = \frac{\gamma_{C}}{\gamma_{X}} B_{1C}$ と変形でき、磁気回転比の関係 $\gamma_{C} : \gamma_{P} : \gamma_{N} = 1: 1.61: 0.40$ を考慮すると → 低周波数核ほど高出力が必要になる

新規核種(X)のCP条件の求め方(3)

③ plw1の最適値を入力し¹⁵N-CPMASスペクトルを確認する

④ CP contact time (p15)の最適値を求め、最終的な¹⁵N-CPMASスペクトルを測定する

/ =1/2核のDDMAS測定

手順	操作
1	¹³ Cファイルの読み込み: ¹³ C-DDMAS
2	edaspで核種の変更
3	プローブのRange Switchを設定
4	o1pを0ppm、または標準サンプルのピーク値に設定
5	d1を求める
6	90°パルスを求める
$\overline{\mathcal{O}}$	測定

poptを用いた90°パルスの決定

① ¹³C-DDMASのplw1をそのまま使用し、poptを用いてp1を掃引します。

90°パルスが¹³Cのパルス長に比べ長すぎるようであればplw1を強くします。
 逆に、短すぎるようでしたらplw1を弱くします。

※ d1を最初に最適な値に設定した後に、poptを実行してください

/ =1/2核のMAS測定

手順	操作
1	¹³ Cファイルの読み込み: ¹³ C-DDMAS
2	パルスプログラムをhpdecから"zg"に変える (PULPROG = zg)
3	edaspで核種の変更
4	プローブのRange Switchを設定
5	o1pを0ppm、または標準サンプルのピーク値に設定
6	d1を求める
$\overline{\mathcal{T}}$	90°パルスを求める
8	測定

7. スピン量子数(1) が ½より大きい核の設定

DD-MASを測定しようとするなら

手順	操作
1	¹³ Cファイルの読み込み: ¹³ C-DDMAS
2	edaspで核種の変更、チューニング
3	o1pを0ppmに設定
4	d1を求める、p1とplw1のバランスを求める
5	測定

しかし、*I*が1/2より大きい核を測定する上で 知っておくべき重要な知識があります。

原子核自身が作る電場との相互作用

Levitt, M.: "Spin Dynamics", John Wiley & Sons, Chichester, (2001).

ST (Satellite Transition)は、 スペクトル幅を限界まで広げても観測できないことが多い

(4) CT (Central Transition)は、 MASをしてもローレンツ波形にならない

Na₂SO₄の²³Na MAS NMRスペクトル

(5) 化学シフトの位置はピークトップではない。

Na_2SO_4 の ^{23}Na MAS NMRスペクトル

(6) CT (Central Transition)でさえ広幅過ぎて、 一度の測定で観測できないことがある。

硫黄(S₈)の³³S Static NMRスペクトル

O'Dell, L.A.; Moudrakovski, I.G., J. Magn. Reson., 207, 345(2010).

サンプル内の全てのピークに同一の90°パルスは存在しない。

四極子核(CT)の1Dスペクトルを得るためのパルス

四極子核(ST)の1Dスペクトルを得るためのパルス

■ 定量のための条件

観測幅を広げると、パルスのパワー不足、リングダウン等で ベースラインが歪むことがある。そういうときには、 Hahn Echo法(pulprog: hahnecho)を用いると効果的である。 Hahn Echo法は、ST (Satellite Transition)をrefocusしないので CT (Central Transition)のみ選択的に観測することができる。

Single Pulseでは、dead timeのせいで美しいPake Doubletが得られない
 Hahn Echo法もSTはrefocusしない。

■ STを観測するには、Solid Echo (pulprog: solidecho)を使うと効果的である

Echoスペクトルの処理の仕方

四極子核測定の実際 (3) 定量のための条件

2.6µsパルスで測定した場合、

ピーク1:90° パルス, ピーク2:130° パルスとなり、誤差は大きくなる 0.9µsパルスなら、

ピーク1:30° パルス, ピーク2:45° パルスとなり、誤差は小さくなる

四極子核のピーク強度を比較するときは、パルス強度の違いによる誤差が生じるしかし、フリップ角を小さくにすると、その誤差はある程度改善される。

■多核の条件設定の仕方

- 1. ¹³Cの測定条件をTopSpin上に表示、測定ファイルの作成
- 2. "edasp"で核種を変更
- 3. チューニング (チューニングロッドの位置はプローブ・スペック・シート参照)
- 4. 待ち時間(d1), パルス長(p1, p15), パルス強度(plw1, spw0)等を調整
- 5. 四極子核で定量を行う際には要注意。

また、観測範囲やパルスの選択も良いデータを得る上で重要。

www.bruker.com

© Copyright Bruker Corporation. All rights reserved