Different Approaches to Bulk Quantification

Bruker Nano Analytics, Berlin, Germany Webinar, June 01, 2017

M4 TORNADO Webinar Outline

Introduction

Presenters The M4 instrument Micro-XRF

Bulk quantification

The basics

Examples

FP Quantification: Al in Cu-alloys Lucas-Tooth quantification: Au-alloys Polynomial calibration: S in oil

Live part

Polynomial calibration: oxidic samples

Summary

M4 TORNADO Webinar Presenters / Moderators

Falk Reinhardt

Application Scientist, Bruker Nano Analytics, Berlin, Germany

Dr. Roald Tagle Sr. Application Scientist, Bruker Nano Analytics, Berlin, Germany M4 Tornado micro-XRF spectrometer Standard configuration

30 W micro-focus Rh tube with polycapillary lens

for excitation spot sizes < 25 µm (for Mo-Ka) Option: second X-ray tube for different excitation conditions (collimated)

30 mm² silicon drift detector (SDD)

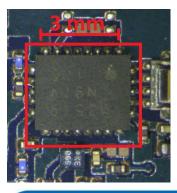
Sealed sample chamber

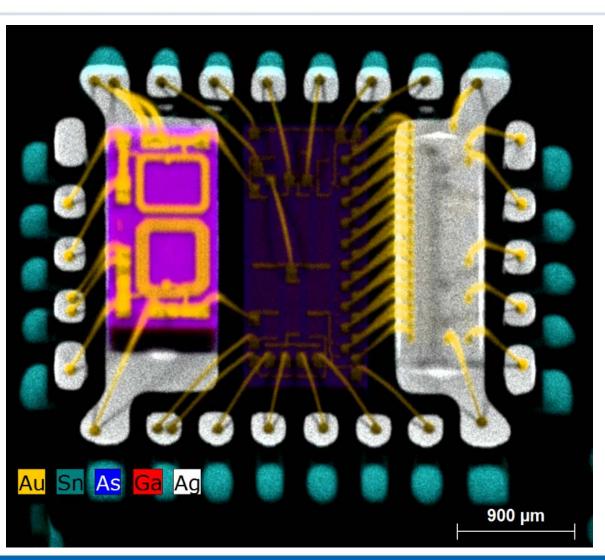
with adjustable pressure between 1 mbar and normal for detecting light elements down to Na

Sample stage with measureable area of 190 mm x 160 mm

Maximum sample height 120 mm, maximum sample weight 5 kg

Sample stage speed up to 100 mm/s, minimum step size 4 μm

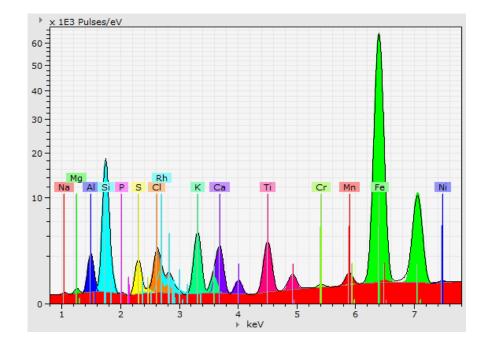

M4 TORNADO



5

Micro-XRF features and benefits At a glance

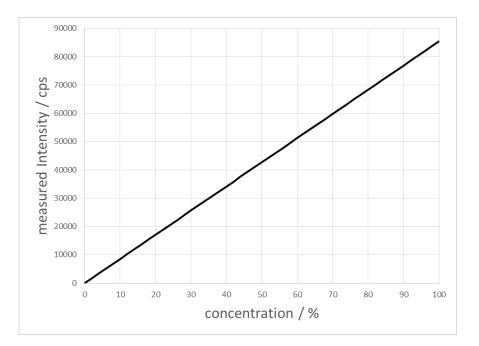
- Little or no sample preparation
- Non-destructive
- Elemental information
- Small spot analysis
- Information from within the sample
- Large-scale
- Quantification



Bulk Quantification The basics – what means quantification?

The aim is to derive the concentration of an element within a sample from the measured fluorescence signal of the respective element

This prerequisites a correlation between the concentration and the measured fluorescence intensity

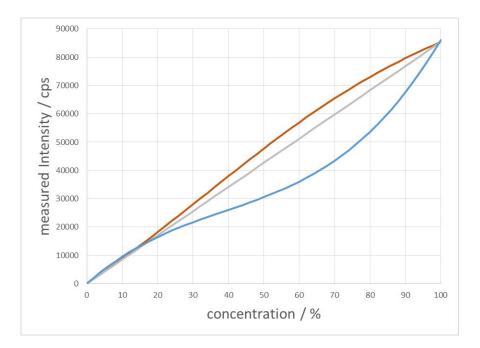

Bulk Quantification The basics – what means quantification?

The aim is to derive the concentration of an element within a sample from the measured fluorescence signal of the respective element

This prerequisites a correlation between the concentration and the fluorescence intensity

Ideally this correlation is linear

Bulk Quantification The basics – what means quantification?


The aim is to derive the concentration of an element within a sample from the measured fluorescence signal of the respective element

This prerequisites a correlation between the concentration and the fluorescence intensity

Ideally this correlation is linear

In reality **inter-element effects** cause deviations from perfect linearity

To correlate measured intensities to elemental concentrations **quantification models** are needed

These models can be of **different complexity** and should reflect the sample systems complexity

Bulk Quantification The basics – quantification models

There are several ways of quantification. These can be sorted in three groups:

- Physical models (Fundamental parameter methods)
 - Calculating with known cross sections and probabilities of "all" physical processes taking place
 - No standards needed
 - Sample must fit the model
- Mathematical models (Empirical methods)
 - Direct correlation between measured intensities and concentrations
 - measured spectra are compared to sufficiently similar reference spectra
 - (many) standards needed
- Mixed models
 - Either standard-supported FP or FP-supported empirical methods

Bulk Quantification The basics – quantification models

The M4 software already offers the MQuant FP routine which can be adapted to specific sample types (Type calibration)

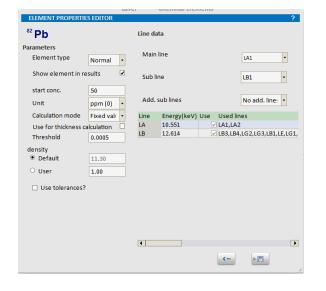
→ see Webinar and/or Lab Report (XRF 465) on steel quantification

The XMethod software package is a tool to manage standards and additional quantification methods

- layer FP (not discussed here)
- bulk FP with multi-standard calibration (non-linear, offset)
- Lucas-Tooth (simple math, fast for multi-element samples)
- Polynomial calibration

Bulk Quantification The basics – XMethod

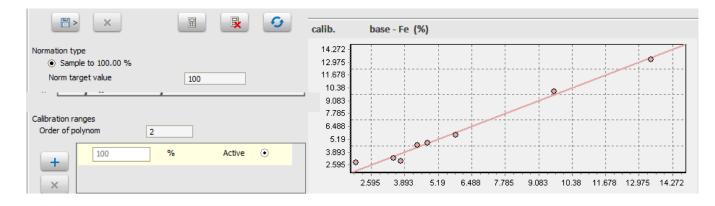
METHOD EDITOR Method data Description Type laver Standard-based bulk (LT) Standard-supported bulk (FP) layer polynomial calibration


XMethod is an add-on to the M4 software.

It provides a database for standards and method development and offers several quantification and calibration models which can be selected and adapted.

The XMethod software package allows to calibrate the quantification method if standards are available or to create non-calibrated FP methods.

Bulk Quantification The basics – XMethod



The software provides a variety of options for optimizing methods. These options include different models for deconvolution, selection of used fluorescence (K or L-series, or even change from La to L β).

Most quantification models allow for different calibration curves for each individual element.

The created methods can be used directly in the M4 Tornado software.

Standard-supported FP Sherman's equation

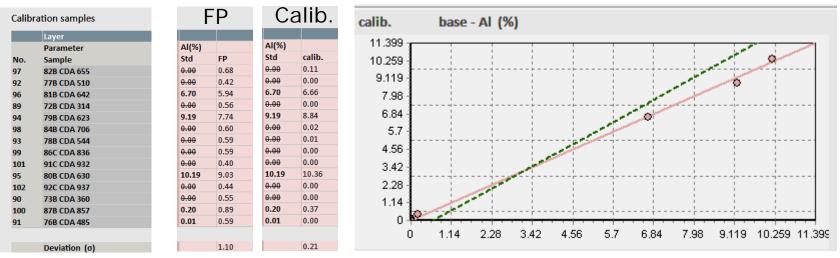
One of many ways to write down Sherman's equation:

$$I_{\mathrm{fl},i} = \begin{bmatrix} K_i \end{bmatrix} \cdot \int_{E_{\mathrm{abs},i}}^{E_{\mathrm{max}}} \int_{x=0}^{D} I_0(E) \cdot e^{\frac{-\mu_S(E) \cdot \rho_S \cdot x}{\sin(\varphi_{\mathrm{in}})}} \cdot C_i \cdot \tau_{i,E} \cdot Q_i(E, E_{\mathrm{fl}}) \cdot e^{\frac{-\mu_S(E_{\mathrm{fl}}) \cdot \rho_S \cdot x}{\sin(\varphi_{\mathrm{out}})}} \cdot \frac{\Omega}{4\pi} \cdot \varepsilon^{\mathrm{D}} \, \mathrm{d}x \, \mathrm{d}E$$

Excitation spectrum (as it reaches the sample)

Attenuation of excitation radiation when penetrating into the sample Sample composition and interaction probabilities Attenuation of fluorescence radiation when leaving the sample Solid angle of detection and detector sensitivity Instrument sensitivity for the respective element

Standard-supported FP Al in Cu-alloys


- Light element in heavy matrix \rightarrow vastly different information depths
- Uncertainty of fundamental parameters
- Mobility of Al and Cu atoms?

	Laver																			
	Parameter		Cu(%)		Ni(%)		Fe(%)		Mn(%)		Cr(%)		AI(%)		Sn(%)		Pb(%)		Zn(%)	
No.	Sample	w.	• •	FP	Std	FP	Std	FP	Std	FP	Std	FP	Std	FP	Std	FP	Std	FP	Std	FP
97	82B CDA 655	1	95.30	97.54	0.01	0.02	0.08	0.18	1.04	0.84	0.00	0.04	0.00	0.68	0.02	0.06	0.01	0.01	0.38	0.63
92	77B CDA 510	1	95.20	95.80	0.00	0.01	0.00	0.08	0.00	0.00	0.00	0.05	0.00	0.42	4.66	3.40	0.02	0.01	0.01	0.24
96	81B CDA 642	1	91.20	93.22	0.00	0.01	0.05	0.13	0.01	0.00	0.00	0.04	6.70	5.94	0.01	0.13	0.01	0.14	0.18	0.39
89	72B CDA 314	1	90.08	89.83	0.00	0.01	0.01	0.10	0.00	0.00	0.00	0.06	0.00	0.56	0.03	0.07	1.99	1.39	7.81	7.99
94	79B CDA 623	1	88.40	89.31	0.08	0.07	2.13	2.05	0.16	0.12	0.00	0.03	9.19	7.74	0.02	0.49	0.00	0.00	0.01	0.20
98	84B CDA 706	1	87.89	87.61	10.03	9.73	1.30	1.19	0.62	0.50	0.00	0.05	0.00	0.60	0.01	0.09	0.01	0.02	0.08	0.20
93	78B CDA 544	_	87.70	89.58	0.08	0.06	0.02	0.11	0.00	0.00	0.00	0.08	0.00	0.59	4.73	3.10	3.87	2.83	3.55	3.65
99	86C CDA 836	_	84.60	86.19	0.27	0.23	0.24	0.31	0.00	0.00	0.00	0.10	0.00	0.59	4.37	3.22	5.03	3.92	5.38	5.44
101	91C CDA 932		83.20	85.65	0.46	0.43	0.03	0.11	0.00	0.00	0.00	0.07	0.00	0.40	6.77	5.39	6.80	5.19	2.62	2.76
95	80B CDA 630		81.20	82.39	4.69	4.65	3.31	3.13	0.54	0.45	0.00	0.02	10.19	9.03	0.02	0.13	0.01	0.01	0.08	0.19
102	92C CDA 937		80.20	84.39	0.35	0.33	0.00	0.16	0.00	0.00	0.00	0.03	0.00	0.44	9.70	7.58	9.23	6.87	0.04	0.21
90	73B CDA 360		61.50	61.56	0.06	0.05	0.17	0.30	0.00	0.00	0.00	0.02	0.00	0.55	0.15	0.03	2.71	1.99	35.30	35.51
100	87B CDA 857		60.90	60.87	0.00	0.08	0.29	0.31	0.01	0.01	0.00	0.04	0.20	0.89	0.78	0.08	1.58	1.29	36.10	36.42
91	76B CDA 485	1	60.50	60.74	0.02	0.01	0.06	0.13	0.00	0.00	0.00	0.02	0.01	0.59	0.69	0.08	1.94	1.40	36.71	37.02
	Deviation (o)			1.79		0.10		0.10		0.11				1.10		1.00		0.99		0.21
	(-)														_					
Norma	ation type							(Cali	hra	atin	n c	nti	on	c.					
								, c	Jan				γρυ		з.					
0) Sample to 100.00 %																			
N	lorm target value		1	100							~~~		+ ~	$\sim m$	nla		or li	24	vid	110
										$\boldsymbol{\nu}$	626	elec	15	an	ipie	:S (or ii	IUI	viu	ua
	ation curve offset		_	_											•					
Use of	ffset									$-\mathbf{N}$	∩rn	าลไม่	72	tior	n tr) 1(()()	%	v/r	ו
Calibra	ation ranges								Normalization to 100 % y/n											
Ord	er of polynom	1		1							<u> - , , , , , , , , , , , , , , , , , ,</u>		aia		aar	~~				
		-						Polynomial degree												
-	100		%		Active	۲									•					
	+									U	se	DITS	set							
										\sim										
								Calibration ranges												
	×										апс	n ai	1()r	זו ו	1111	es				

Standard-supported FP Al in Cu-alloys

- Low AI concentration expose a trend to overestimated AI values
 - Possibly surface contaminations, overestimated sensitivity?
- Higher AI concentrations are generally underestimated
 - FP values?

Linear calibration with offset yields good results

Standard-supported FP Al in Cu-alloys

Calibration camples

Usually a calibration curve of 1st or 2nd order is sufficient for a wide calibration range of all selected elements

In special cases (detection limits for traces, systematic effects like described here) offset should be considered

	Layer		_																	
	Parameter	- 11	Cu(%)		Ni(%)		Fe(%)		Mn(%)		Cr(%)		AI(%)		Sn(%)		Pb(%)		Zn(%)	
No.	Sample	w.	Std	calib.	Std	calib.	Std	calib.	Std	calib.	Std	calib.	Std	calib.	Std	calib.	Std	calib.	Std	calib.
97	82B CDA 655	1	95.30	98.08	0.01	0.02	0.08	0.14	1.04	0.95	0.00	0.04	0.00	0.11	0.02	0.17	0.01	0.00	0.38	0.48
92	77B CDA 510	1	95.20	95.25	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.05	0.00	0.00	4.66	4.57	0.02	0.00	0.01	0.08
96	81B CDA 642	1	91.20	92.54	0.00	0.01	0.05	0.08	0.01	0.01	0.00	0.04	6.70	6.66	0.01	0.26	0.01	0.17	0.18	0.23
89	72B CDA 314	1	90.08	89.90	0.00	0.01	0.01	0.06	0.00	0.00	0.00	0.06	0.00	0.00	0.03	0.17	1.99	1.87	7.81	7.92
94	79B CDA 623	1	88.40	87.99	0.08	0.07	2.13	2.17	0.16	0.14	0.00	0.03	9.19	8.84	0.02	0.72	0.00	0.00	0.01	0.04
98	84B CDA 706	1	87.89	87.72	10.03	10.17	1.30	1.20	0.62	0.57	0.00	0.05	0.00	0.02	0.01	0.21	0.01	0.01	0.08	0.05
93	78B CDA 544	1	87.70	88.36	0.08	0.07	0.02	0.07	0.00	0.00	0.00	0.09	0.00	0.01	4.73	4.19	3.87	3.77	3.55	3.45
99	86C CDA 836	1	84.60	84.63	0.27	0.25	0.24	0.29	0.00	0.00	0.00	0.10	0.00	0.00	4.37	4.35	5.03	5.19	5.38	5.17
101	91C CDA 932	1	83.20	82.92	0.46	0.46	0.03	0.07	0.00	0.00	0.00	0.07	0.00	0.00	6.77	7.18	6.80	6.79	2.62	2.50
95	80B CDA 630	1	81.20	80.67	4.69	4.81	3.31	3.33	0.54	0.53	0.00	0.02	10.19	10.36	0.02	0.25	0.01	0.00	0.08	0.03
102	92C CDA 937	1	80.20	80.54	0.35	0.35	0.00	0.12	0.00	0.00	0.00	0.04	0.00	0.00	9.70	10.01	9.23	8.88	0.04	0.05
90	73B CDA 360	1	61.50	61.63	0.06	0.06	0.17	0.27	0.00	0.00	0.00	0.02	0.00	0.00	0.15	0.12	2.71	2.65	35.30	35.25
100	87B CDA 857	1	60.90	61.02	0.00	0.09	0.29	0.28	0.01	0.01	0.00	0.04	0.20	0.37	0.78	0.19	1.58	1.72	36.10	36.28
91	76B CDA 485	1	60.50	60.92	0.02	0.02	0.06	0.09	0.00	0.01	0.00	0.02	0.01	0.00	0.69	0.19	1.94	1.87	36.71	36.89
	Deviation (o)			0.91		0.06		0.06		0.04				0.21		0.38		0.14		0.11

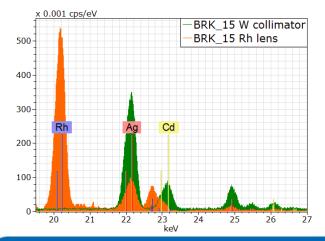
Lucas-Tooth fast Au quantification

Lucas-Tooth model:

$$c_i = o_i + s_i I_i + \sum_{n \neq i} (e_{ni} I_n)$$

- *o_i*: offset for Element *i*
- *s_i*: "sensitivity" for element *i*
- *I_i:* measured intensity for element *i*
- + inter-element effects

(corrections based on intensities of other elements)


Much simpler math than FP \rightarrow faster calculations

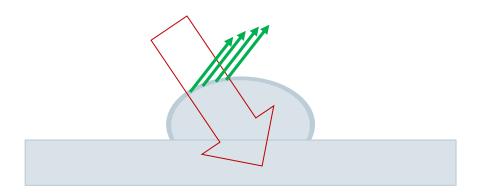
Lucas-Tooth fast Au quantification

Measurement conditions:

- W tube (no crosstalk for Ag/Cd with Rh lines)
- ø 1 mm collimator (to average over inhomogeneities, high-Z efficiency)
- 50 kV / 700 µA
- Strong 200 μm AI + 200 μm Ti filter (to block characteristic W lines from spectrum)
- Ambient pressure (heavy elements suffer only little from air absorption)
- 1x 30 mm² SDD
- 60 s live time

ELEMENT PROPERTIE	S EDITOR						?
⁷⁹ Au Gold		Line da	ata				
Parameters		Line	Energy(keV)	Jse Used lin	ies		
Element type	Normal -	LB LA	11,443 9,713	 ✓ 12,14,15 ✓ 22,24 	5,17,18,19,20,	21,25,27,28,47	,48
Show element in re	sults 🗹						
start conc.	100,00						
Unit	% (2) 🔹						
Calculation mode	Calculate 🝷						
Use for thickness ca	alculation 🗆						
Threshold	0,0005						
density							
Oefault	19,30						
O User	1,00						
Use tolerances?							
		4					
					<-	> 💾	

Lucas-Tooth fast Au quantification

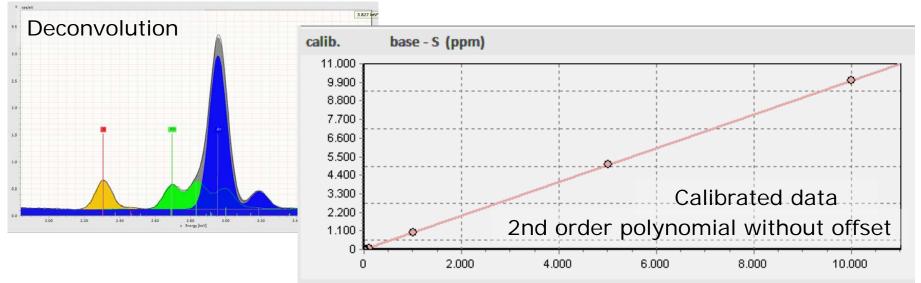


Au bulk LT LB											Str	ructure	Normatio	n Calibration	Spectru
Method data	Calib	oration samples													
		Layer													
Description Au bulk LT LB	•••	Parameter		Au(%)		Ag(%)		Cu(%)		Zn(%)		Cd(%)			
AU DUIK LI LB	No. 0	Sample BRKR 01		Std 99,50	calib. 99,79	Std 0,50	calib. 0,65	Std 0,00	calib. 0,00	Std 0,00	calib. 0,00	Std 0,00	calib. 0,00		
Туре	1	BRKR 03		99,50 L 97,48	98,04	0,50	0,65	1,70	1,24	0,40	0,00	0,00	0,00		
Standard-based bulk (LT)	2	BRKR 06		L 97,48	95,50	3,45	3,59	1,13	1,24	0,40 0,00	0,00	0,00	0,00		
Spectrum deconvolution	3	BRKR 14		L 93,42	92,08	2,00	2,08	6,30	5,95	0,00	0,00	0,00	0,00		
	4	BRKR 15		L 91,70	91,46	2,20	2,00	5,10	5,26	0,50	0.58	0,50	0,50		
Bayes deconvolution	5	BRKR 21		L 88,10	87,90	5,90	6,42	6,00	5,96	0,00	0,00	0,00	0,00		
Comment	6	BRKR 24		L 85,05	84,60	12,20	12,29	2,20	3,19	0,00	0,00	0,55	0,55		
	7	BRKR 34		L 80,50	79,67	19,50	18,83	0,00	0,00	0,00	0,00	0.00	0,00		
	10	BRKR 47	1	1 72,23	71,82	18,40	17,50	4,60	7,02	3,07	3,07	1,70	1,70		
	11	BRKR_49	1	I 70,10	69,54	24,80	24,33	5,10	7,12	0,00	0,00	0,00	0,00		
Measurement parameters	13	BRKR_62	1	L 64,50	64,97	14,90	15,55	14,90	14,67	1,90	1,89	3,80	3,80		
HV/kV 50	14	BRKR_72	1	L 54,50	55,45	30,00	30,35	15,50	15,19	0,00	0,00	0,00	0,00		
	15	BRKR_75	(49,00	49,64	25,00	27,76	26,00	23,20	0,00	0,00	0,00	0,00		
Collimator / mm 1.00 o 🔻	16	BRKR_76		L 45,45	45,75	25,00	25,63	25,00	25,04	4,55	4,55	0,00	0,00		
Atmosphere Air	17	BRKR_79	1	l 37,50	37,14	5,00	4,57	52,50	52,61	3,00	3,00	2,00	2,00		
Current / µA 700 ¢															
		Deviation (σ)			0,49		0,46		0,41		0,05		0,00		
Calibration coefficients															ca
6.215077839E-2 9.441026855E-1)> X		¥ [<u>с</u>	alib.	base - A	u (%)							
1.062521476E-1	Normation	type				106,885 -									
1.356966132E-2		mple to 100,00 %	No Norma	tion		99,251 -								000	
7.297788983E-2 3.11628731E-1	Norm	target value	100			91,616	-					-	1 0	•	
5.11020/3121	Calibration	curve offset				83,981							0		
	Use offset					76,347					00				
	Calibration	ranges				68,712 61,077	· · · · ·							+	
		100 %	Ac	tive 📀		53,443			0						
	+					45,808		-							
						38,173 -	-0								
	×														

Polynomial Calibration S in oil

- Sample can hardly be described by a model (shape, density, ...)
- Very limited information depth for Sulfur
- Negligible self-absorption

• Simple model: concentration of S oil is linear with intensity


Polynomial Calibration S in oil

- 10 µl of each reference sample (CONOSTAN) were deposited on a clean SiO₂ disc
- Concentration of S from 0 to 10000 ppm (1 %)
- Measurement conditions:
 - Rh tube with polycapillary lens
 - 50 kV/ 600 μA
 - No filter (Rh-L used to efficiently excite Sulfur)
 - Ambient pressure (to avoid evaporation)
 - 2x 30 mm² SDDs
 - 600 s real time (statistic needed especially for low concentrations)

Polynomial Calibration S in oil

Most simple sample description

Cali	bration	samp	es

	Layer							
	Parameter		S(ppm)		Rh(%)		Ar(%)	
No.	Sample	W.	Std	calib.	Std	calib.	Std	calib.
124	S_OIL_10000 ppm	1	10000	9993	0.00	0.00	0.00	0.00
123	S_OIL_5000 ppm	1	5000	5014	0.00	0.00	0.00	0.00
122	S_OIL_1000 ppm	1	1000	995	0.00	0.00	0.00	0.00
120	S_OIL_500 ppm	0	500	458	0.00	0.00	0.00	0.00
119	S_OIL_100 ppm	1	100	93	0.00	0.00	0.00	0.00
118	S_OIL_25 ppm	1	25	23	0.00	0.00	0.00	0.00
116	S_OIL_0 ppm	1	0	6	0.00	0.00	0.00	0.00

Polynomial Calibration Geological samples - Live

In a sample which is mostly composed of light elements (mainly Oxygen), inter-element effects, such as secondary excitation or selfabsorption are no longer dominant effects.

For almost all elements with concentration < 10 % the measured intensity is linear with the element's concentration.

 \rightarrow Even though most geological samples can be rather complex (> 30 elements), the quantification of most elements can be performed using a simple quantification model.

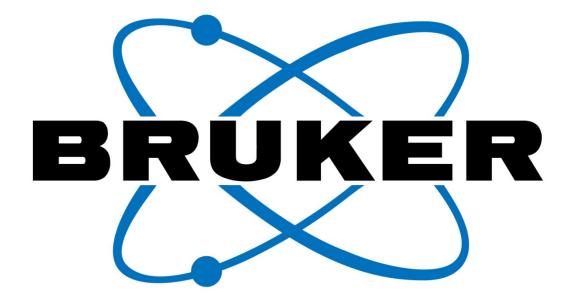
- The M4 with XMethod offers 4 different approaches to bulk quantification
- FP methods are most flexible

Calibration is an option to improve the obtained results and the standards may deviate more from the actual samples than for other approaches.

• LT method is very fast

... as it is based on simple math. A large set of very similar standards is required.

• Polynomial calibration is the most basic approach.


It is suitable when either most of the sample is not of interest (or "invisible") and when inter-element effects can be neglected. One standard per element is sufficient but a larger number improves the calibration.

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*.

Innovation with Integrity