Mickael Febvre EMEA LAM application director.

Measuring nanoscale viscoelastic properties with AFM-based nano-DMA

RÚKÉR

B

Measuring nanoscale viscoelastic properties with AFM-based nano-DMA

Q: What can we do to improve the capabilities of AFM in measuring viscoelastic properties of materials?

Imaging focused modes - not suited for quantifying viscoelasticity

- Probing sample impulsively
 - Plunge-in and rip-out in each cycle, make-and-break contact
 - Not a linear measurement
 - Since it's not linear, the nominal frequency is not the only frequency
 - Cannot really quantify frequency dependence
- Tapping based methods introduce added constraints
 - Frequencies fixed and 100,000x too high
 - Challenge in quantifying load and adhesion

Start with time dependence Basic idea of AFM mode for rheology

- Approach: Preload the sample at known force
- In contact: Modulate at well-defined, rheological freq, low amp
 - Low amplitude provides small perturbation in force: linear regime
 - Cover 0.1Hz to 300Hz: single frequency or spectrum
- Retract: fit with contact mechanics model that includes adhesion (e.g. JKR) to obtain contact radius (ac)
 - Need contact radius to extract moduli (E', E") from raw data

T. Igarashi, S. Fujinami, T. Nishi, N. Asao, and K. Nakajima, Macromolecules (2013)

• Need to extract amplitude ratio (D_1/Z_1) and phase shift $(\varphi - \psi)$ and do a little complex algebra to get stiffness = force/deformation

•
$$S^* = S' + iS'' = K_c D_1 e^{i\varphi} / [Z_1 e^{i\psi} - D_1 e^{i\varphi}]$$

$$S' = \frac{K_c D_1}{C} \frac{\cos(\varphi - \psi) - D_1 / Z_1}{C}$$

$$Z_1 \quad (\cos(\varphi - \psi) - D_1/Z_1)^2 + (\sin(\varphi - \psi))^2$$
$$S'' = \frac{K_c D_1}{1 + \frac{1}{2}} \frac{\sin(\varphi - \psi)}{1 + \frac{1}{2}}$$

$$S = \frac{1}{Z_1} \frac{1}{(\cos(\varphi - \psi) - D_1/Z_1)^2 + (\sin(\varphi - \psi))^2}$$

• Loss tangent is then: $\tan \delta = S''/S' = \frac{\sin(\varphi - \psi)}{\cos(\varphi - \psi) - (D_1/Z_1)}$

Two modes quantify viscoelasticity E', E'', tan δ at bulk DMA frequencies

- Mapping with Fast Force Volume
 - Simple, single modulation segment embedded in force curve

- Spectroscopy with RampScripting
 - measurements at multiple frequencies at a single point

Example: Tan(δ) contrast inversion in a blend as function of temperature

contrast inversion

0

25

50

75

100

Temperature (°C)

- PP and COC have equal E' at 25C
- PP softens more rapidly than COC
- PP loss tangent is initially greater than COC with contrast inversion occurring as temp approaches COC glass transition

Example: Drastic modulus contrast change missed by other approaches

- The storage modulus map of PC-ABS at 100Hz changes drastically at 120C as SAN becomes soft and viscous
- A high frequency stiffness map (PFQNM) misses the effect

DMTModulus

PC-ABS: this drastic change with temperature is not apparent in PFQNM elastic modulus maps

How are these spectra collected?

- An AFM-nDMA "RampScript" has segments that allow for control of preload, relaxation, modulation, and calculation of contact radius
- Low frequency segments use raw deflection for better filtering, while higher frequencies use lock-in based demodulation

Managing changes in contact radius

• To get moduli E', E", we also need a contact mechanics model like JKR to estimate contact radius (ac)

•
$$E' = \frac{S'}{2a_c}; E'' = \frac{S''}{2a_c}$$

- Reference segments correct evolution of contact radius over time
 - Measure $S'(f_{ref})$ and assume $E'(f_{ref})$ is constant during script

Setting up AFM-nDMA spectroscopy Efficient generation of scripts

- Quick set up with DMA focus
 - Frequencies, preload, modulation amplitude
- Advanced parameters if wanted
 - Log vs linear frequency distribution
 - Frequency shuffle avoids artifacts
 - Modify reference segments
 - Change length of relaxation segment
 - Adjust any ramp parameter
- Or edit segment-by-segment in general ramp scripting interface
 - Maximum flexibility

AFM-nDMA Script Generator Image: Script Participation Script Participation Image: Script Participation Script Participation Image: Script Participation Script Participation	Script Notes		
otal Script Time: 00:00:44			
Frequency Controls		Advanced	
Use Actuator		Step Type	Log v
Lowest Frequency (Hz)	10	Frequency Ordering	Shuffle v
Highest Frequency (Hz)	100	# Reference Frequencies	5
# Frequency Steps	10	Reference Frequency (Hz)	100
General Controls		 Advanced 	
PreLoad (pN)	10000	Ramo Size (nm)	1000
Force Setpt Mod Amplitude (pN)	2000	Tip Velocity (nm/s)	500
		Relaxation Segment Time (s)	30
		Minimum # Samples/Cycle	50
		Minimum # Cycles/Segment	20
		Minimum Segment Time (s)	0.1
		Approx Ext Mod Sens (nm/V)	10
		# Lock-in Updates/Segment	25

New hardware for AFM-nDMA Installs at rear of Dimension Icon chuck

- Fast, low drift heater, RT to +250C
 - Up to 2cm samples, prefer
 <1mm thin for fast equilibration
 - High power, water cooled, 5x faster stabilization than Bruker's std heater – in practice, stabilization time paced by sample
 - 0.1Hz-300Hz frequencies available while heating
- High frequency sample actuator, expands frequency range to 20kHz at RT

Workflow for locating and navigating Optical \rightarrow fast AFM maps \rightarrow AFM-nDMA

- MIROView: Optical image is the canvas
- Start AFM with PeakForce QNM mapping
 - Uses same tips as AFM-nDMA
 - Fast, hi-res, elastic modulus, calibrated
 - Resolve small domains, structure detail
- Then targeted rheological measurements
 - Use PFQNM to ID ROI
 - AFM-nDMA maps, arrays, vectors, points

vectors

BRUKER

Addressing good calibration Probe solution with software integration

- Characteristics of a probe solution
 - Controlled tip radii, SEM measured
 - LDV measured spring constant, matched to sample modulus
- No reference sample required

Can a nanoscale measurement tie directly to bulk DMA?

- Nanoscale AFM-nDMA results show excellent agreement with
 - micrometer scale Hysitron Nanoindenter
 - millimeter scale Bulk DMA
- Consistent results across labs and operators (no reference samples)
- Directly cover bulk frequencies and extend to 20kHz with external actuator

15 May 2019

Time Temperature Superposition

- Collecting frequency spectra at several temperatures enables a more complete analysis
- TTS principle: near glass transition, raised temperature is equivalent to lowered frequency and vice versa
- Master curve: single curve resulting from shifting data measured at different temperatures
- Shift factors: can be parameterized via either WLF or Arrhenius model.
 - Arrhenius equation gives activation energy from temperature dependence of a rate – energy needed to kick off a mechanical relaxation process

Temperature dependence for fluorinated ethylene propylene

- Qualitatively shows expected behavior
- Glass transition apparent in storage modulus and loss tangent
- Expected frequency dependence
- How well does it match bulk?

Full TTS from AFM data Compared to bulk DMA on same sample

- Master curves from AFM-nDMA data match bulk DMA reasonably well including glass transition temperature and the strong change in properties there
- Arrhenius analysis of TTS shift factors from AFM data also agrees with bulk

Correlating changes in nanomechanical properties with microstructural changes

- AFM-nDMA in agreement with bulk measurements
 - Irreversible change as sample crystallizes
 - Strong tan- δ peak at 150C, disappears on ramp down
- AFM-nDMA provides both quantitative modulus data and correlated high-resolution structural information

15 May 2019

Bruker Nano Surfaces

Summary Viscoelastic analysis of polymers with the spatial resolution of AFM

- AFM-nDMA measures E', E", tan(d) directly at rheological frequencies
- Linear measurement, corrected for intrinsic creep effects
- Results match well with Hysitron & bulk DMA
- AFM data allows for full TTS analysis
- Spatial resolution of better than 50nm

DMA: E. = 212.5 kJ/mo

menius Activation Energy Analys

ED AFM-nDMA vs. bulk DMA and Hysitron

The AFM-nDMA product

- Accessory for Dimension Icon
- Includes hardware, software, test samples, calibrated probes
- HW is modular add-on to Dimension stage

