Mercury Analysis in Food, Environmental and Medical Samples with TXRF

Bruker Nano GmbH, Berlin, Germany Webinar 09.12.2020

- confidential -

Welcome

Today's Topics

- TXRF how does it work?
- Mercury Where does it come from and where does it go?
- TXRF analysis of mercury
- Comparison with Atomic Spectroscopy methods
- Interactive Q & A

Speakers

Dr. Hagen Stosnach Applications Scientist TXRF Berlin, Germany

Dr. Armin Gross Global Product Manager TXRF Berlin, Germany

TXRF – How does it work?

Principles of total reflection X-ray fluorescence (TXRF) spectroscopy

Total reflection X-ray fluorescence spectroscopy

Beam angle: 0° / 90°

- Samples must be prepared on a reflective media
- Polished quartz glass or polyacrylic glass disc
- Dried to a thin layer, or as a thin film or microparticle

Principles of total reflection X-ray fluorescence spectroscopy

Samples for TXRF

- Powders: Direct preparation or as suspension
- Liquids: Direct preparation
- Always as a thin film, micro fragment or suspension of a powder
- Necessary sample amount: Low µg respectively µl range

Simple quantification

- Matrix effects are negligible due to thin layer
- Quantification is possible by internal standardization

Principles of total reflection X-ray fluorescence spectroscopy

In TXRF the samples are prepared as thin films or layers

- → Matrix effects are negligible
- ➔ Quantification is possible

Principles of total reflection X-ray fluorescence spectroscopy

In TXRF the samples are prepared as thin films or layers

- → Matrix effects are negligible
- ➔ Quantification is possible

- TXRF detects elements from Na(11) to U(92)
- The element sensitivities depend on the atomic number
- The sensitivity factors are calibrated ex works
- Quantification requires the addition of one standard element

Mercury – Where does it come from and where does it go?

Mercury Background information

10.12.2020

Mercury Background information

Sources for mercury uptake

 Fish & other seafood, non-alcoholic beverages and composite food are the most important contributors to inorganic mercury dietary exposure

Toxicity of mercury

- The critical target for toxicity is the kidney
- Other targets include the liver, nervous system, immune system, reproductive and developmental systems
- Methylmercury is able to enter the hair follicle, and to cross the placenta as well as the blood-brain and blood-cerebrospinal fluid barriers, allowing accumulation in hair, the foetus and the brain

Mercury Background information

Regulations

Maximum levels for mercury in certain foods (Commission Regulation (EC) No 1881/2006)

3.3	Мегсигу	Maximum level (mg/kg_wet weight)
3.3.1	Fishery products (²⁶) and muscle meat of fish (²⁴) (²⁵), excluding species listed in 3.3.2. The maximum level applies to crustaceans, excluding the brown meat of crab and excluding head and thorax meat of lobster and similar large crustaceans (<i>Nephropidae</i> and <i>Palinuridae</i>)	0,50
3.3.2	Muscle meat of the following fish (²⁴) (²⁵): anglerfish (Lophius species) atlantic catfish (Anarhichas lupus) bonito (Sarda sarda) eel (Anguilla species) emperor, orange roughy, rosy soldierfish (Hoplostethus species) grenadier (Coryphaenoides rupestris) halibut (Hippoglossus hippoglossus) marlin (Makaira species) megrim (Lepidorhombus species) mullet (Mullus species) pike (Esox lucius) plain bonito (Orcynopsis unicolor) poor cod (Tricopterus minutes) portuguese dogfish (Centroscymnus coelolepis) rays (Raja species) redfish (Sebastes marinus, S. mentella, S. viviparus) sail fish (Istiophorus platypterus) scabbard fish (Lepidopus caudatus, Aphanopus carbo) seabream, pandora (Pagellus species) shark (all species) snake mackerel or butterfish (Lepidocybium flavobrunneum, Ruvettus pretiosus, Gempylus serpens) sturgeon (Acipenser species) swordfish (Xiphias gladius)	1,0

10.12.2020

Mercury Background information

Regulations

- US EPA Safe Drinking Water Act: Maximum level 2 µg/l
- German drinking water regulation: Maximum level 1 µg/l
- International norms for beverages: Maximum levels 5 – 50 µg/l

Mercury analysis by TXRF - Instrumentation

- confidential -

10.12.2020

Mercury analysis Instrumentation

S	2 PICOFOX						_							
•	Mo tube, 50 kV/1000 µA					BR	UKER		xast on					
•	60 mm ² XFlash SDD						COFOX							
•	25 position	sample	e chan	ger				S2 PIG				1		
	1 H Hydrogen								~					He
	Lithium Beryllium 11 12 Na Mg Sodium Magnesium								Boron 13 Al Aluminium	C Carbon 14 Silicon	N Nitrogen 15 Phosphorus	Oxygen 16 Sulphur	F Fluorine 17 Cl Chlorine	Neon 18 Ar Argon
	19 20 21 K Ca Sc	22 Ti V	24 Cr	25 26 Mn	Fe C	28 Co Ni	29 Cu	30 Zn Zino	31 Ga	32 Ge	33 As	34 Selanium	35 Br	36 Kr
	Potassium Calcium Scandulin 37 38 39 Rb Sr Y Rubidium Strontium Yttrium 55 56 57 Cs Ba La Cesium Barium Lanthanun	40 41 Zr NI Zirconium Niobi 72 73 Hf Ta Hafnium Tanta	ium Molybdenum 74 a W alum Tungsten	A3 44 Tc 44 Technetium R 75 76 Re Rhenium (Itom CC Itom 45 Ru F Ruthenium Rhc S 77 Os 100 Osmium Iric	46 Rh Pd odium Palladium 78 Ir Pt Platinum	47 Ag Silver 79 Au Gold	48 Cd Cadmium 80 Hg Mercury	49 Indium 81 Thallium	50 Sb Antimony 82 Pb Lead	51 Sn Tin 83 Bi Bismuth	52 Te Tellurium 84 Polonium	53 I lodine 85 At Astanine	54 Xe Xenon 86 Rn Radon
	87 88 89 Fr Ra Ac Francium Radium Actinium									07			70	74
		L Ce Lanthanides Ceriu	e Pr um Praseodymium	60 61 Nd Neodymium Pr	Pm 62 Formethium Sam	63 Eu harium Europiun	64 Gd Gadolynium	65 Tb Terbium	66 Dy Dysprosium	67 Ho Holmium	68 Er Erbium	69 Tm Thulium	70 Yb Ytterbium	71 Lu Luthetium
		Actinides Thori	h Pa ium Proactinium	U Uranium N	Np F leptunium Plute	Pu Am onium Americiu	n Curium	Berkelium	Cf Californium	Es Einsteinium	Fm Fermium	Md Mendelevium	Nobelium	Lr Lawrencium

н Hydrogen Li Be Nitrogen Oxygen Lithium Bervllium Boron Carbon Fluorine 13 Ρ S Na Mg AI Si CI Sodium Magnesium Aluminium Silicon Phosphorus Sulphur Chlorine 23 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge Se Br Κ As Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine 38 43 45 46 49 Υ Rb Sr Zr Nb Мо Тс Ru Rh Pd Cd Sb Sn Те Ag In Zirconium Rubidium Strontium Yttrium Niobium olvbdenur Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Antimonv Tin Tellurium lodine 84 85 Cs Ва Hf Та W Re Os Pt TI Pb Bi Po La Ir Au Hg At

Iridium

Sm

Samarium

Pu

Plutonium

Platinum

Eu

Europium

Am

mericiur

Gold

Gd

Gadolynium

Cm

Curium

Tb

Terbium

Bk

Berkelium

Thallium

Dy

Dysprosiun

Cf

98

Lead

Ho

Holmium

Es

qc

Californium Einsteinium

Bismuth

Er

Erbium

Fm

Fermium

00

Polonium

Tm

Thulium

Md

Mendelevium

101

-

S4 T-STAR

19

Cesium

Fr Francium

87

Barium

Ra

Radium

88

Lanthanum

Ac

Actinium

89

Hafnium

L

Lanthanides

Ac

Actinides

Tantalum

Ce

Cerium

Th

Thorium

Tungsten

Pr

Praseodymiu

Pa

Proactinium

91

Rhenium

Nd

Neodymium

U

Uranium

Osmium

Pm

Promethium

Np

Neptunium

- Mo- and W-tube, 50 kV/1000 μ A
- Mo-K, W-L and W-Brems excitation
- 90 position sample changer

He

Helium 10

Ne

Neon

Ar

Argon

Kr

Krypton

Xe

Xenon

Rn

Radon

Lu

Luthetium

Lr

Lawrencium

103

18

36

54

86

Astanine

Yb

Ytterbium

No

Nobelium

102

Mercury analysis by TXRF – Water and environment

- confidential -

Mercury analysis Water and food samples

Background

Drinking water:

• Strict public limit values for various metals

Element	Limit value (µg/l)		
Cu	2000		
Mn	50		
Fe	200		
Ni	200		
As	10		
Cd	3		
Hg	1		
Pb	10		
U	10		

Example: German drinking water regulation

Mercury analysis Water and food samples

Background

High-end laboratories for drinking water

- Very high sample throughput
- Only analysis of drinking water
- \rightarrow In most cases application of ICP-MS

Water analysis in environmental research

- Normal sample throughput
- Water with different matrices and various content of solid matter
- Demand for the analysis of biomonitors
- Sometimes demand for mobile on-/near-site analysis
- → TXRF more suitable than other methods like ICP-MS

Mercury analysis Water

Sample preparation

- Aliquotation of 1 ml sample
- Addition of EDTA- or thioureane solution for Hg-fixation
- Addition of gallium solution for internal standardization
- Homogenization, transfer of 10 µl onto sample carrier
- Drying
- Measurement

Mercury analysis Water

Results

	LLD Water (µg/l)		LLD Sewage (µg/l)		
	S2 PICOFOX	S4 T-STAR	S2 PICOFOX	S4 T-STAR	
Manganese	0,62	0,35	1,4	0,88	
Iron	0,49	0,27	1,1	0,72	
Nickel	0,33	0,18	0,73	0,49	
Copper	0,29	0,17	0,63	0,44	
Arsenic	0,15	0,10	0,27	0,21	
Cadmium	n. d.	51	n. d.	64	
Mercury	0,22	0,11	0,42	0,26	
Lead	0,20	0,11	0,37	0,23	
Uranium	0,34	0,28	0,34	0,30	

Mercury analysis Soil

- Heavy metal distribution in soils is often very inhomogeneous
- Typical TXRF analysis of soils only analysed minute sample amounts
 → only screening analysis is possible
- For soil samples the application of handheld XRF is more suitable. These also fulfill several international norms (e.g. US EPA Method 6200-05, EN 15309-07, ISO 13196:2013)

Mercury analysis by TXRF – Food and beverages

- confidential -

Iced tea - Motivation

Iced tea is a widely consumed non-alcoholic beverage and challenging for trace element analysis because of the high sugar matrix

Sample preparation

- Spiking of an iced tea samples with As, Cd, Hg and Pb
- Internal standardization with Ga and Pd
- Addition of polyvinyl alcohol solution
- Homogenization
- Preparation of 10 µl on quartz glass sample carriers

Results – S4 T-STAR

10.12.2020

24

Results – S2 PICOFOX

10.12.2020

Results

(µg/L)	LLD S2 PICOFOX	LLD S4 T-STAR
Arsenic	3,4	2,9
Cadmium	n.d.	132
Mercury	4,3	3,1
Lead	4,1	2,8

Mercury analysis Solid food

Background

Dried food

- On a world-wide scale fish and rice are two dominant food sources
- For test purposes the certified reference materials "DORM-3" (fish protein) and "NIST 1568a" (rice flour) were tested. Both are available as freeze-dried powders.

Mercury analysis Solid food

Sample preparation solid food

- Grinding (< 25 μm)
- Weighing of about 100 mg into plastic tubes
- Suspension in 5 ml aqueous Triton X100 solution
- Addition of internal standard
- Homogenization, treatment in ultrasonic bath
- Preparation of 10 µl suspension on sample carrier
- Drying

Mercury analysis Solid food

Results

	LLD S2 F (mg	PICOFOX /kg)	LLD S4 T-STAR (mg/kg)		
	NIST 1568a	DORM-3	NIST1568a	DORM-3	
Arsenic	0,075	0,074	0,074	0,067	
Cadmium	n. d.	n. d.	0,269	0,3	
Mercury	0,084	0,098	0,080	0,072	
Lead	0,086	0,099	0,072	0,065	

Mercury analysis by TXRF – Medical analysis

- confidential -

Urine - Motivation

- Toxic metals like As and Hg are normally present in blood and serum at ppt-levels. This is too low for TXRF and is normally done by ICP-MS (TXRF is widely used in medical research for these samples for other elements like Mn, Cu, Zn and Se)
- As the kidney is the main secretion part, analysis of toxic metals in urine is of high interest
- Especially when dealing with sampling in rural regions, when intoxications must be monitored over longer time periods or samples must be stored and transported the analysis of urine samples becomes important

Urine - Samples

• Seronorm Urine CRM

Urine – Sample preparation

Same as for all high-matrix liquid samples

- Aliquotation
- Internal standardization
- Addition of polyvinyl alcohol solution
- Transfer of 10 µl to quartz glass sample carrier
- Drying (here on air at room temperature

Arsenic

Cadmium

Mercury

Thallium

Bismuth

Lead

Mercury analysis Medical samples

LLD Seronorm Urine Level 2 (µg/l)

S4 T-STAR

2,8

420

3,1

2,9

2,7

2,6

S2 PICOFOX

2,9

n. d.

3,6

3,5

3,4

3,4

Urine - Results

Hair - Motivation

- Hair is easier to collect, transport and store than other medical samples like blood or serum
- As elements are fixed in the hair, element control over longer time period is possible

Hair – Samples

- Certified reference sample NIES 13 (National Institute for Environmental Studies)
- 5 human hair samples (cleaned with acetone and ultrapure water)

Hair – Sample preparation by suspension

- Grinding
- Weighing of about 100 mg
- Suspension in aqueous Triton X100 solution
- Internal standardization
- Homogenization
- Transfer if 10 µl suspension to quartz glass carrier
- Drying

Hair – Sample preparation by acid digestion on hot plate

- Grinding
- Weighing of about 100 mg
- Digestion at 120 ° C for 2h in 1 ml HNO3/H2O2 mixture (3:1), filled up to 5 ml with pure water
- Internal standardization
- Homogenization
- Transfer if 10 µl suspension to quartz glass carrier
- Drying

10.12.2020

- confidential -

37

Mercury analysis Medical samples

Hair - Results

LLD	S2 PICOFO	OX (mg/kg)	S4 T-STA	R (mg/kg)
	Digest.	Susp.	Digest.	Susp.
Manganese	0,40	0,61	0,15	0,31
Nickel	0,20	0,27	0,059	0,12
Arsenic	0,11	0,19	0,036	0,076
Cadmium	n. d.	n. d.	4,7	12,3
Mercury	0,13	0,23	0,040	0,084
Lead	0,13	0,22	0,040	0,085

Mercury analysis by TXRF – Analysis of cosmetics

- confidential -

10.12.2020

Mercury analysis Cosmetics

Mercury in cosmetics - Motivation

- Mercury is a common ingredient found in skin lightening soaps and creams
- It is also found in other cosmetics, such as eye makeup cleansing products and mascara
- Mercury can be found in cosmetics exists in two forms:
- inorganic (e.g. ammoniated mercury), which is used in skin lightening soaps and creams
- organic mercury compounds (thiomersal ethyl mercury and phenyl mercuric salts), which are used as preservatives

Mercury in cosmetics - Motivation

The allowed mercury content in cosmetics is strictly regulated in many countries

Regulatory body	Hg limits for cosmetics other than eye area products
European Union	Banned
Many African nations	Banned
United States FDA	< 1 mg/kg
Health Canada	< 3 mg/kg
Phillipines FDA	< 1 mg/kg
Regulatory body	Hg limits for eye area products
European Union	< 70 mg/kg
United States FDA	< 65 mg/kg

Sample preparation

- The complex and variable matrix of cosmetics (oil, fats, minerals and numerous organic and inorganic detergents) make the complete digestions for techniques like ICP-MS extremely difficult
- For TXRF a rather simple suspension preparation can be applied for all types of cosmetics

Measurements

 Measurements were performed with a S2 PICOFOX, applying Mo-K excitation and measurement times of 1000 s

Results

174 17		Pb		As		Нg		
作市 Samples	本方法 TXRF	其它方法 Other method	本方法 TXRF	其它方法 Other method	本方法 TXRF	其它方法 Other method		
GBW09305	39.4	37.2(Reference value)	9.1	9.9(Reference value)	-	-		
GBW09306	-	-	-	-	0.64	0.67(Reference value)		
GBW09307	-	-	-	-	1.33	1.35(Reference value)		
洁面膏 Face wash gel	1.25	1.20 (ICP-MS)	-	-	1.20	1.16 (ICP-MS)		
护臀膏 Bottom Butte	-	-	1.30	1.24 (ICP-MS)	-	-		
日霜 Day cream*	0.62	0.60 (Added value)	0.58	0.60 (Added value)	0.57	0.60 (Added value)		
美白霜 Whitening cream	6.71	6.84 (ICP-MS)	-	-		-		

Table 3 Comparison of determination results(mg/kg) of cosmetics samples by different methods

*: 空白样品加标(Spiked blank sample)。

Wang, Q. et al. (2018): "Determination of Lead, Arsenic and Mercury in Cream Cosmetics by Total Reflection X-Ray Fluorescence Spectrometry Using Suspension Sampling", Chinese Journal of Analytical Chemistry, 4, 517-523

Summary

- TXRF is suitable for the analysis and control of Hg (and other toxic metals) in all types of cosmetics
- The applied sample preparation is fast, easy and does not need any toxic or dangerous chemicals

Outlook

 Detailed work on the analysis of toxic metals in cosmetics (optimisation of sample preparation procedures, development of SOPs, publications) in cooperation with external partners are planned for Q1 2021

Mercury analysis by TXRF - Summary

Mercury analysis Summary

Environmental analysis

- TXRF is suitable for the analysis of Hg and other metals in water samples from fresh water to highly contaminated sewages
- All different kinds of biomonitors (plants, algae, biofilms etc.) can be analysed for environmental research and control

Food and beverages

- Beverages can easily be analysed into the sub mg/l range for Hg and other toxic elements like As and Pb
- Fast screening for toxic elements in solid foodstuff is possible after an easy sample preparation, avoiding complex digestion procedures

Mercury analysis Summary

Medical research

 Hg and other metals can easily be analysed in urine and hair samples applying fast and easy preparation techniques

Cosmetics

 Hg and other metals like As and Pb can be analysed in various types of cosmetics for control of regulatory limits avoiding time consuming and expensive preparation techniques

Comparison with Atomic Spectroscopy

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
Suspensions, solid samples	direct analysis without sample digestion possible	saves time and avoids use of hazardous chemicals	
Solid, valuable samples	non-destructive analysis possible (semi- quantitative)	samples are not destroyed and can be used for other purposes	
Linear range	high linear quantify-cation range from sub- ppb to low %	avoids multiple calibrations or measurements; full results after one run	

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
Media, disposables	no consumption of media (e.g. carrier gases, chemicals, standards), no need for periodic replacement of parts (lamps, nebulizer)	cost saving; no special infrastructure (gas lines) required	Vestalen
Quantification	by internal standardization, instrument calibrated ex works	simple; time saving, no daily calibration required	FUEL C FUEL C
Memory effects	No memory effects	ICP: intense purging of the system, risk of carryover from previous samples	Resdrog Net Intervaly Bedgound Conc Flag A Mean 647.664 2721.505 0.001 - - Rep1 1151.879 2712.233 0.002 - - Rep3 644.889 2715.977 0.001 - - Rep3 644.889 2715.977 0.001 - - Objmd

Feature comparison TXRF versus ICP

Торіс	Feature	Benefit	
System maintenance and cleaning	QC system check automated, no cleaning of specific parts required	ICP requires daily/weekly system checks	Cka al KK IF Dr. 9
Ease of operation	simple, suitable for academic training	technicians are able to use TXRF; ICP typically used by (scientific) experts	
Footprint	compact benchtop instrument, foot print 693 x 528 mm	saves lab space	

Cost comparison TXRF versus ICP-MS

Total (5 years)	S4 T-STAR	ICP-MS	Remarks
Installation	136.900€	188.100€	incl. peripheral devices
Operation costs	64.600 €	179.000€	disposables, gas, media, standards etc.
Man hours	82.000 €	134.000€	100 k€/a, 220 working days, 20 samples/d
Total	283.500 €	501.100 €	
Costs / sample	12,89€	22,78 €	
Sources: Automotive study 2015			

Sources: Automotive study 2015 EPA study ICP-OES cost calculator Spectro Discussion forums Bruker data More detailed PPT and Excel sheet available

Technology comparison Day-to-day checks

Technology comparison Daily checks

ICP	TXRF	
Setup before analysis		
Inspect torch for injector blockage	Check system status	
Check nebulizer for blockage	Select excitation	
Inspect peristaltic pump tubing		
Check exhaust system operating		
Rinse between samples (ICP-MS)		
After analysis / end of day		
Aspirate rinse solution		
Release pressure and detach pump		
Empty waste vessel		
Wipe down exterior surfaces	Wipe off exterior surfaces	
Leave system in stand-by mode	Automatic system stand-by	

Technology comparison Weekly/monthly checks

ICP	TXRF
Clean torch and test plasma ignites after reconnection	Sensitivity test (automatic!)
Clean nebulizer frequently (ICP-MS)	Start auto beam adjustment, when sensitivity is decreasing
Check sample introduction tubing, O-rings	
Inspect cone or snout and clean, if needed; check vacuum after reconnection	
Check/replace graphite gasket (ICP-MS)	
Inspect torch bonnet (radial ICP, -MS)	
Clean spray chamber	Check auto beam adjustment
Check/clean nebulizer (ICP-OES)	
Inspect induction coil	
Check/clean air filter for cooling air	
Check/clean water level and air filter on water chiller	

12/10/2020

Q & A

Any Questions?

Please **type in** the questions you may have for our speakers in the **Questions form** and click **Submit**

Thank you for your attention!

www.bruker.com www.s2picofox.com www.s4tstar.com

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.-confidential -