Art & Conservation Series – Part I

10 mm

New Horizons of micro-XRF

Dr. Roald Tagle and Falk Reinhardt Application Scientists micro-XRF at Bruker Nano Analytics

9 million pixel map

Introduction Presenters / Moderators

Falk Reinhardt

Application Scientist, Bruker Nano Analytics, Berlin, Germany

Dr. Roald Tagle

Sr. Application Scientist, Bruker Nano Analytics, Berlin, Germany

Overview

- XRF in Art & Conservation
- Using the M4 Tornado for studying old photographs
 - The object
 - The instrument
 - The different options and their effect
- M6 Jetstream
 - A short history
 - Improvements over time
 - Most recent improvements
- Live part
 - Some features of the upgraded M6 Jetstream
- Q&A session

Supporting Art and Conservation XRF and Art a Hand-in-Hand partnership

- XRF has proven to be a core analytical technique in Cultural Heritage studies.
- XRF provides key information on the studied objects in a reliable fast and non-invasive way.
- But the needs are not always the same. They differ in crucial ways with respect to the what? , the where?, and the how?
- One analytical principle but several instruments.

Art & Conservation strategy Solutions Portfolio

Data evaluation strategy Unification of sophisticated tools

Developments & Innovations Motivation for improvement

Visualization of objects composition by

micro-XRF mapping strongly supports the multidisciplinary research and evaluation of complex samples.

However, despite the advances in micro-XRF instrumentation and analysis in recent years, some **limitations** remain:

- Objects with topography or a complex surface shape
- Long scan times required to achieve sufficient accumulated counts over large areas
- X-ray tube configurations can lead to non-ideal X-ray line overlaps and analysis environment may lead to damage to sensitive objects (e.g. vacuum)

A degraded photograph Possibilities of micro-XRF

The studied object is an old photograph of a harbor, with horse carriages and sailing ships.

This photograph has lost lots of its contrast. The paper turned yellow; the silver is tarnished.

Nevertheless, the pictures, i.e. the Ag atoms on the paper are still there.

Can micro-XRF be used to map the distribution of Ag on the paper?

- Non-invasive multi-element technique
- Spatial resolution below 20 µm
- Minimal, almost no sample preparation required

A degraded photograph Challenges for micro-XRF

Several challenges arise when looking for Ag in a photograph:

- The Ag-K lines are almost invisible, because the Ag layer is extremely thin
- The Ag-L lines overlap with the signal from 1 % Argon in the air
- The typical Rh source yields very inefficient excitation

What features would we need?

- Efficient excitation of Ag-L lines
 → Use different anode materials (W or Cr)
- Removing the Ar background
 - Vacuum \rightarrow puts sample under strain
 - N₂-atmosphere, only 20 % less signal* than vacuum but sample-friendly

*calculated for 800 mbar N₂ using https://xrfcheck.bruker.com/FilterTransmissions

The M4 Tornado Standard configuration

Micro-XRF table-top instrument:

- Primary tube with polycapillary optic with < 20 µm spot size for Mo-Ka (usually with Rh-target)
- Optional second tube, with collimator
- 1 or 2 SDD(s), 30 mm² or 60 mm²
- fast servo-driven stage
- Membrane pump, pressure down to 1 mbar, usually 20 mbar
- Excitation and detection under 50°
- Two optical microscopes under ~90°

Introduced with M4 Tornado Plus:

- Light-element window detectors
- Aperture Management
- High signal throughput
- He-purge system

The M4 Tornado ...for studying photographs

Micro-XRF table-top instrument:

- Primary tube with polycapillary optic with $< 20 \ \mu m$ spot size for Mo-Ka (usually with Rh-target) \leftarrow which target is optimal?
- Optional second tube, with collimator
- 1 or 2 SDD(s), 30 mm² or 60 mm² •
- fast servo-driven stage •
- Membrane pump, pressure down to 1 mbar, usually 20 mbar •
- Excitation and detection under 50° •
- Two optical microscopes under ~90°

Introduced with M4 Tornado Plus:

- Light-element window detectors •
- Aperture Management
- High signal throughput
- He-purge system \leftarrow used for N₂

M4 Tornado for photographs Anode comparison

For a "quantitative" comparison between the measurement conditions, defined areas of different contrast were selected from the maps:

Dark \rightarrow Chimney

Medium \rightarrow Wall

Light \rightarrow Sky

The sum spectra of these areas were extracted for comparison

Conditions: 35 kV 800 μ A **W**-anode N₂-atm at 830 mbar 50 μ m, 30 ms

M4 Tornado for photographs Anode comparison

The Cr-tube gives ~20 % more intensity for the Ag-L line than a W-tube. The Rh tube is very inefficient even though it has been used under Vacuum condition.

Is a Cr-anode better than a W-anode?

M4 Tornado for photographs Anode comparison

Cr-tube

W-tube

Differences are surprisingly small.

Possible explanation: The spot of a Cr tube is slightly larger than that of a W tube due to the lower energy of the photons (and the larger angle of total reflection).

So ... which one is better, Cr or W?

- Cr is slightly better in terms of Ag-signal
- W offers more versatility (especially when used with different filters).
- W is a very robust X-ray source but lacks light-element performance.

Conditions: 35 kV 800 µA **W-anode**, N₂-atm. 830 mbar 50 µm, 30 ms

30 kV 400 µA **Cr-anode**, N₂-atm. 806 mbar 50 µm, 30 ms

M4 Tornado for photographs Resolution comparison

100 µm x 50 ms 90 min vac

50 μ m x 30 ms 200 min N₂

200 µm x 100 ms 40 min vac

M4 Tornado for photographs Time comparison

 \rightarrow Measurement times around 50 ms are sufficient.

830 ms ~ 90 h

M4 Tornado for photographs A "quick" scan

M4 Tornado 35 kV 800 $\mu A,$ 2x 30 mm² SDD, air 20 mbar, 50 ms, and 100 $\mu m.$

Summary M4 Tornado for photographs

Micro-XRF allows to study the Ag distribution in old photographs.

The resulting picture's quality depends on the measurement conditions

- Spatial resolution, i.e. step width
 - Optimum was found to be between 50 μm and 100 μm
- Measurement time per pixel
 - No significant improvement for more than 50 ms/pixel
- Atmosphere
 - Vacuum, if sample allows, otherwise N₂ flush
- The anode material
 - Cr seems self-evident because most efficient for Ag-L excitation
 - W is almost as good but by itself a more versatile tube

M6 Jetstream at work Working around the planet

Staedel Museum, Frankfurt

Xinghai Museum, Dalian

Rijksmuseum, Amsterdam

M6 Jetstream – a short story Introduction (2012)

Prototype M6 Jetstream

- Developed in cooperation with the Delft University of Technology
- Unique instrument, operational at the Rijksmuseum, Amsterdam
- Some features:
 - 800 mm x 600 mm scan area
 - 30 W Rh tube with polycapillary optic
 - 30 mm² SDD
 - Instrument for vertical scanning
 - Sample stage speed up to 100 mm/s, and 200 mm/s²

M6 Jetstream - introducing novel features

- Vertical and horizontal sample analysis option
- Tilting mechanism for inclination adjustment
- Diffuse LED Illumination for better sample visualization
- Ultrasonic sensor for non-contact sample protection
- 60 mm² SDD
- Helium flush for light element detection
- Flight case option for transport

M6 Jetstream - introducing novel features

- Vertical and horizontal sample analysis option
- Tilting mechanism for inclination adjustment
- Diffuse LED Illumination for better sample visualization
- Ultrasonic sensor for non-contact sample protection
- 60 mm² SDD
- Helium flush for light element detection
- Flight case option for transport

M6 Jetstream - introducing novel features

- Vertical and horizontal sample analysis option
- Tilting mechanism for inclination adjustment
- Diffuse LED Illumination for better sample visualization
- Ultrasonic sensor for non-contact sample protection
- 60 mm² SDD
- Helium flush for light element detection
- Flight case option for transport

M6 Jetstream - introducing novel features

- Vertical and horizontal sample analysis option
- Tilting mechanism for inclination adjustment
- Diffuse LED Illumination for better sample visualization
- Ultrasonic sensor for non-contact sample protection
- 60 mm² SDD
- Helium flush for light element detection
- Flight case option for transport

M6 Jetstream - introducing novel

features

- Vertical and horizontal sample analysis option
- Tilting mechanism for inclination adjustment
- Diffuse LED Illumination for better sample visualization
- Ultrasonic sensor for non-contact sample protection
- 60 mm² SDD
- Helium flush for light element detection
- Flight case option for transport

M6 Jetstream - introducing novel

features

Double detector technology

with 2x60 mm² SDD (4x the detector area of the prototype)

- High throughput technology to improve data acquisition rate (550 kcps data acquisition rate for scanning)
- Aperture management system for improved spatial resolution
- Additional complex filters including options to filter out Rh-K lines

Development Phase II Double detector for the M6 Jetstream

Using 2x 60 mm² SDDs results in a significant improvement of signal acquisition

- The Geometry reduces the "shadow" effect
- The dual-detector setup with independent signal processing units allows for maximizing the detectable counts while retaining good spectroscopic resolution and low dead times

More signal per time \rightarrow faster scanning and/or better signal to noise ratio and lower sample dose \rightarrow passive improvement without increasing sample irradiation

Double detector for the M6 Jetstream Reducing measurement shadow

Single detector "looking" from the right

Double detector "looking" from both sides

Detection "shadow"

Double detector for the M6 Jetstream High pulse throughput

Using 2x 60 mm² SDDs lots of photons hit the detector(s)

Independent signal processing is an advantage, as each detector must deal with "only" its own half of the count rate.

State-of-the-Art detector technology allows the use of signal processing units that allow to create 275 kcps as maximum output count rate.

More in the live part!

Double detector for the M6 Jetstream Radiation dose in the sample

about the **Energy** (per sample mass)

Power is given in W (Watt), Energy is given in J (Joule).

WIKIPEDIA The Free Encyclopedia $D = \frac{E}{m} = \frac{E}{A \cdot d \cdot \rho}$

Power is Energy per time (1 W = 1 J/s), put otherwise 1 J = 1 W \cdot s

With a fixed tube power, the dose on the sample can directly be tuned by **changing the time** the sample is irradiated.

Development Phase II Aperture Management System (AMS)

The AMS enables:

- A narrower beam
 - To keep things in focus, even below and above the analytical distance
- A longer working distance
 - Less chance of collisions
 - → So variations in sample height are not critical
- Smaller spots for light elements
 - → So lighter elements are resolved better

Qualitative analysis Aperture Management System (AMS)

Aperture management – patent pending

Qualitative analysis AMS and 2x 60 mm² SDDs

The AMS reduces the number of photons that reach the sample. The AMS 1000 reduces the intensity by a **factor of ~3**, the AMS 500 down to a **factor ~7**.

This effect is somehow cushioned by the increased solid angle of detection and signal processing capabilities of the 2x 60 mm² SDDs.

Aperture management – patent pending

Qualitative analysis Topography and AMS

Qualitative analysis **Topography and AMS**

Standard setting

Qualitative analysis Topography and AMS

Standard setting

High pulse throughput Live part

The M6 Jetstream has been developed for measuring works of Art

After its introduction in 2012 the M6 Jetstream has been upgraded in 2 phases

The most recent developments introduced

- A new set of filters
- The Aperture Management System
- The Dual Detector setup with improved signal throughput

Questions, Thoughts or Comments?

If you have questions or want to contact us during the Webinar, please **type your questions**, thoughts, or comments in the **Q&A box** and **press Submit**.

We ask for your understanding if we do not have time to discuss all comments and questions within the session.

Any unanswered questions or comments will be answered and discussed by e-mail or in another Webex session.

Art & Conservation Webinar Series

Part I – May 6th New Horizons of micro-XRF

Part II – May 27th Flexible and portable-XRF mapping solutions: Bruker's ELIO and CRONO spectrometers

Part III – June 16th

TRACER: the benchmark in handheld-XRF for cultural heritage

Register on https://www.bruker.com/events/webinars.html

Presenters:

Art Segment Manager:

Roald Tagle Falk Reinhardt Michele Gironda <u>roald.tagle@bruker.com</u> <u>falk.reinhardt@bruker.com</u> <u>michele.gironda@bruker.com</u>

