

The Analysis of Rare Earth Elements in various sample. types using SEM-XRF (XTrace)

Andrew Menzies and Stephan Boehm

Bruker Nano GmbH, Am Studio 2D, 12489-Berlin, Germany

Presenters

Andrew Menzies, PhD

Sr. Applications Scientist Geology and Mining, Bruker Nano Analytics, Berlin, Germany

Stephan Boehm

Product Manager Micro-XRF/SEM and SEM-WDS Bruker Nano Analytics, Berlin, Germany

The Analysis of Rare Earth Elements in various sample types using SEM-XRF (XTrace)

01 Introduction

Analytical Examples: O4 Geology, Glass, Electronics...

CONTRACTION SEM-XRF (XTrace) and Rapid Stage

5 Summary and Conclusion

Analysis of REE's

SEM-XRF Analysis of Rare Earth Elements (REE's): Introduction

- Rare Earth Elements (REE's) are extremely useful and used in many modern components. Consequently, they are classified as critical elements in many western countries, especially given the current dominant production levels from China.
- The identification and quantification of REE's in various samples is thus crucial, whether it be for geological exploration and mining, or component quality control, or recycling for the future.
- Micro-XRF is ideal to analyse large sample areas on the micro-scale and is a powerful analytical tool for identifying both trace elements or minerals with minimal preparation.
- This is especially so for samples that are also electron beam sensitive, such as specialized glasses. The addition of a micro-XRF source to your SEM will augment your laboratories capabilities and the benefits and capabilities of SEM-XRF will be discussed in the context of REE analysis within various fields of study.

Rare Earth Elements (REE's): Introduction

- Group of 17 chemically similar metallic elements, including the 15 lanthanides as well as scandium and yttrium.
- Chemically similar:
 - easily substitute for each other and often occur together within various minerals
- Earth's crust abundance of < 10 ppm (Rudnick et al., 2003)
- Do NOT occur naturally as metallic elements, but
- Do occur in a wide range of mineral types, for example halides, carbonates, oxides, phosphates and silicates.

Innovation with Integrity

HEAVY Rare Earth Elements LIGHT Rare Earth Elements

5

Webinar 2022

15 lanthanides Lanthanum [La] Cerium [Ce] Praseodymium [Pr] Neodymium [Nd] Promethium [Pm] Samarium [Sm] Europium [Eu] Gadolinium [Gd] Terbium [Tb] Dysprosium [Dy] Holmium [Ho] Erbium [Er] Thulium [Tm] Ytterbium [Yb] Lutetium [Lu] And Scandium [Sc] and

Rare Earth Elements (REE's): Introduction

- Group of 17 chemically similar metallic elements, including the 15 lanthanides as well as scandium and yttrium.
- Chemically similar:
 - easily substitute for each other and often occur together within various minerals
- Earth's crust abundance of < 10 ppm (Rudnick et al., 2003)
- Do NOT occur naturally as metallic elements, but
- Do occur in a wide range of mineral types, for example halides, carbonates, oxides, phosphates and silicates.

Element	Upper crust	Middle crust	Lower crust	Total crust	Composition of the Earth's crust	Bulk composition of the Earth	
	Rudnick (≈ppm	(and Gao	[9, p. 53f]	(µg g ⁻¹)	Binder [10, p.776f]	Allegre et al. ([6], p. 61	
Sc	14	19	31	21.9	20 ppm	$10.1 \pm 2 \text{ ppm}$	
Y	21	20	16	19	31.5 ppm	2.4 ± 0.2 ppm	
Cu	28	26	26	27	68 ppm	64.7 ± 5 ppm	
La	31	24	8	20	35 ppm	415 ± 10 ppb	
Ce	63	53	20	43	68 ppm	1088 ± 20 ppb	
Pr	7.1	5.8	2.4	4.9	9.5 ppm	165 ± 5 ppb	
Nd	27	25	11	20	40 ppm	814 ± 10 ppb	
Sm	4.7	4.6	2.8	3.9	7.5 ppm	259 ± 3 ppb	
Dy	3.9	3.8	3.1	3.6	6.2 ppm	424 ± 10 ppb	
Tb	0.7	0.7	0.48	0.6	1.2 ppm	66.6 ± 5 ppb	
Lu	0.31	0.4	0.25	0.3	0.81 ppm	42.5 ± 2 ppb	
Pt	0.5	0.85	2.7	1.5	0.004 ppm	1562 ± 40 ppb	
Au	1.5	0.66	1.6	1.3	0.0041 ppm	$102 \pm 20 \text{ ppb}$	

HEAVY Rare Earth Elements LIGHT Rare Earth Elements

Source: https://geology.com/articles/rare-earth-elements/

Rare Earth Elements (REE's): Essential to modern-day technologies

Source: http://www.eurare.org/RareEarthElements.html Source: https://geology.com/articles/rare-earth-elements/

Rare Earth Elements (REE): Essential to modern-day technologies

Source: https://etn-demeter.eu/what-are-rare-earth-elements-rees/

Rare Earth Elements (REE's): World Production and Resources

The exploration for rare earth element deposits is currently experiencing a boom period due to their importance as a component within modern materials and technology devices.

Source: http://www.elements.viualcapitalist.com

Source: https://geology.com/articles/rare-earth-elements/

The Analysis of Rare Earth Elements in various sample types using SEM-XRF (XTrace)

Introduction: SEM-XRF (XTrace)

SEM and analytical options: Electron and Photon Excitation for micro-XRF and EDS/WDS

Analytical Parameters and Conditions SEM-EDS vs SEM-XRF

Parameter	E-beam (SEM-EDS)	Micro-XRF (SEM-XRF-EDS)	e-beam
Spatial Resolution & Analyzed Volume	Ø: few µm Information depth: µm; (depending primarily on electron energy)	Ø: 15-30 μm Information depth: μm to mm; (depending on analysed element and matrix)	X-ray beam EDS
Detectable Elements	Atomic number Z ≥ 4 (beryllium)	Atomic number Z ≥ 6 (carbon)	
Energy range	K- L –M – Lines (up to 20 keV)	K- L –M – Lines (up to 40 keV)	WD X-rays from
Concentration Range	Down to 1000 ppm	Down to 5 ppm	10 mm Sample
Quantification	Standard less and Standard based	Standard less and standard based	Sample
Data collection	Simultaneously	Simultaneously	
Sample Preparation	Sample needs to be electrically conductive (commonly carbon-coated), polishing required	Electrical Conductivity not required, samples doesn ´t need to be polished	Rapid Stage
Sample stress	Heated due to absorbed electrons	minimal	
Spectroscopic resolution	Down to 121 eV for Mn Ka	Down to 121 eV for Mn Ka	SEM Stage
Distribution Measurements	By rastering e-beam	By continuously (Rapid) Stage movement since the X- ray optic is fixed in space	

X-ray tube

Spatial Resolution and Analyzed Volume: Transmission and Attenuation

The transmission of X-rays is important for excitation of samples as well as for the fluorescence radiation.

Penetration depth: the depth that can still be excited

Information depth: the depth from which fluoresced X-rays can still reach the detector

Information depths of selected element fluorescence lines in different matrices

Introduction to Micro-XRF and Rapid Stage Differences to Electron Beam Excitation

Micro-XRF Benefits:

- Non-destructive analytical technique
- No charging effects
- Minimal Sample Preparation Required
- Lower detection limits (down to 5 ppm)
- High Energy Lines Detection (Full Spectrum Range up to 40 keV)
- Ideal for Low kV or Beam sensitive samples
- Fast Large Area Mapping
- Micrometer scale measurement over cm

SEM-XRF and Rapid Stage Integration in ESPRIT Software

Micro-XRF Installations: Adaptable to Various SEM models

Gemini

000

A = 0

The Analysis of Rare Earth Elements in various sample types using SEM-XRF (XTrace)

Example: Geology and Mineralogy

Rare Earth Elements: X-ray Energies

BRUKER

Rare Earth Elements have a range of X-ray energies that are detectable by EDS:

K-Series:34 to 55 keVL-Series:4 to 10 keV

M-Series: 0.5 to 1.5 keV

L-Series detectable with both electron and x-ray excitation source.

K-Series detectable with x-ray excitation source only.

WEBINAR: SEM-XRF (XTRACE) Rare Earth Elements: X-ray Energies

Rare Earth Elements: X-ray Energies

Rare Earth Elements have a range of X-ray energies that are detectable by EDS:

L-Series detectable with both electron and x-ray excitation source.

K-Series detectable with x-ray excitation source only.

Jarosewich, E., and Boatner, L.A, 1991, Rare-Earth element reference samples for electron microprobe analysis, Geostandards Newsletter, Vol. 15, No. 2, p.397-399.

Rare Earth Elements: X-ray Energies

Rare Earth Elements have a range of X-ray energies that are detectable by EDS:

K-Series:	34 to 55 keV
L-Series:	4 to 10 keV
M-Series:	0.5 to 1.5 keV

L-Series detectable with both electron and x-ray excitation source.

K-Series detectable with x-ray excitation source only.

Jarosewich, E., and Boatner, L.A, 1991, Rare-Earth element reference samples for electron microprobe analysis, Geostandards Newsletter, Vol. 15, No. 2, p.397-399.

Rare Earth Elements: Apatite – Low concentrations

Rare Earth Elements: Smithsonian Standard: Apatite Total REEs approx. 1.43 wt%

La203	Ce203	Pr203	Nd203	Sm203	EuO	Gd2O3	Tb2O3	Dy203	Ho2O3	Er203	Tm203	Yb203	Lu203	Sum
0.509	0.655	0.000	0.165	0.073	0.000	0.081	0.000	0.001	0.000	0.001	0.000	0.008	0.000	1.493

Jarosewich, E., Gooley, R., and Husler, J. 1987. Chromium Augite – A new microprobe reference sample, Geostandards Newsletter, Vol. 11., No. 2, p197-198.

Rare Earth Elements: NIST Standard Glass

Analysis of NIST Standard Glasses with dopped concentrations in the approximate range of:

NIST 610:	500 ppm
NIST 612:	50 ppm
NIST 614:	5 ppm

SE Image

Ce

La

Nd

Eu

NIST Glass Standards

© 2022 Bruker

Rare Earth Elements: Geology – major deposits

Mineral	Formula	Approximate REO % 32		
Aeschynite-(Ce)	(Ce,Ca,Fe,Th)(Ti,Nb) ₂ (0,OH) ₆ .			
Allanite-(Ce)	(Ce,Ca,Y) ₂ (Al,Fe ³⁺) ₃ (SiO ₄) ₃ OH.	38		
Apatite	Ca ₅ (PO ₄) ₃ (F,CI,OH)	19		
Bastnäsite-(Ce)	(Ce,La)(CO ₃)F	75		
Brannerite	(U,Ca,Y,Ce)(Ti,Fe) ₂ O ₆	9		
Britholite-(Ce)	(Ce,Ca) ₅ (SiO ₄ ,PO ₄) ₃ (OH,F)	32		
Eudialyte	Na4(Ca,Ce)2(Fe2+,Mn,Y) ZrSi8022(OH,Cl)2(?).	9		
Euxenite-(Y)	(Y.Ca.Ce,U,Th)(Nb,Ta,Ti) ₂ O ₆	24		
Fergusonite-(Ce)	(Ce,La,Nd)NbO ₄	53		
Gadolinite-(Ce)	(Ce,La,Nd,Y)2Fe2+Be2Si2O10-	60		
Kainosite-(Y)	$Ca_2(Y,Ce)_2Si_4O_{12}CO_3.H_2O.$	38		
Loparite	(Ce,La,Na,Ca,Sr)(Ti,Nb)O ₂	30		
Monazite-(Ce)	(Ce,La,Nd,Th)PO4	65		
Parisite-(Ce)	Ca(Ce,La) ₂ (CO ₃) ₃ F ₂ .	61		
Xenotime	YPO₄.	61		
Yttrocerite	(Ca,Ce,Y,La)F ₃ .nH ₂ O.	53		
Huanghoite-(Ce)	BaCe(CO ₃) ₂ F.	39		
Cebaite-(Ce)	ebaite-(Ce) Ba ₃ Ce ₂ (CO ₃) ₅ F ₂ .			
Florencite-(Ce)	CeAl ₃ (PO ₄) ₂ (OH) ₆ .	32		
Synchysite-(Ce)	Ca(Ce,LA)(CO ₃) ₂ F.	51		
Samarskite-(Y)	(Y,Ce,U,Fe ³⁺) ₃ (Nb,Ta,Ti) ₅ O ₁₆ .	24		
Knopite	(CaTi,Ce2)03	na		

Webinar 2022

SEM-XRF Analysis of Rare Earth Elements (REE's): Applications – Granite with Allanite

SEM-XRF Analysis of Rare Earth Elements (REE's): Saprolite with REE's

SEM-XRF Analysis of Rare Earth Elements (REE's): Individual Mineral Grains

SEM-XRF Analysis of Rare Earth Elements (REE's): Crushed Monazite Powder

Analysis of Crushed Monazite Samples: pressed pellet, no carbon coating

The Analysis of Rare Earth Elements in various sample types using SEM-XRF (XTrace)

Example: Glass

SEM-XRF Analysis of Rare Earth Elements (REE's): Comparison with SEM-EDS

SEM-EDS is better for low energy lines

SEM-XRF is better for high energy lines

SEM-XRF Analysis of Rare Earth Elements (REE's): Comparison with SEM-EDS

SEM-EDS is better for low energy lines

SEM-XRF is better for high energy lines Glass Spectrum: SEM (20 kV), XRF (50 kV) cps/eV 120 Bottom: 0 to 40 keV 100 Gd La Right: 80 0 to 10 keV Ti 120 20 **SEM-XRF: RED** 100 2 3 4 5 Energy [keV] **SEM-EDS: BLUE** 80 SEM Image showing charging 60 under e-beam: 40 Y 20 kV 20 5 10 15 20 25 30 35 40 Energy [keV]

The Analysis of Rare Earth Elements in various sample types using SEM-XRF (XTrace)

Example: Electronics

SEM-XRF Analysis of Rare Earth Elements (REE's): Applications – Electronics

Image courtesy of Benjamin Monneron-Enaud, TU Bergakademie Freiberg, Germany.

SEM-XRF Analysis of Rare Earth Elements (REE's): Applications – Electronics

REEs Example: Applications – Electronics

6.5

Summary and Conclusions: Micro-XRF on SEM

2 Excitation Sources: Electron Beam (e-beam) Micro-XRF (X-ray beam)

1 Detector: Energy Dispersive Spectrometer (EDS)

2 Stages: SEM Stage Rapid Stage

Micro-XRF Benefits:

- Non-destructive analytical technique
- No charging effects
- Minimal Sample Preparation Required
- Lower detection limits (down to 5 ppm)
- High Energy Lines Detection (Full

Spectrum Range up to 40 keV)

- Ideal for Low kV or Beam sensitive samples
- Fast Large Area Mapping
- Micrometer scale measurement over cm

Summary and Conclusions: Micro-XRF on SEM

- The analysis of samples at micrometres (µm) scale over centimetres (cm) scale on a standard SEM.
- Able to perform large area maps on a variety of samples
 - Geological, Glass, Electronics, Powders...
- Sample Preparation Minimal for Micro-XRF
 - No carbon-coating, No polishing, Directly into the SEM
- Able to detect and resolve minor and trace elements, e.g. REE's
- Identification of high energy X-Ray lines
- Can work in combination with SEM e-beam
 - Commonly Low-KV due to charging and sample interaction

Micro-XRF on SEM (XTrace): **Further Information**

QUANTAX Micro-XRF

Trace Element Sensitivity with Minimal Sample Preparation

High-Speed Elemental X-ray Mapping even over Large Areas Film Thickness Analysis

ELECTRON MICROSCOPE ANALYZERS

BRUKER

Large Area Mapping of Mineralogical Samples

The new Rapid Stage is specifically designed for SEMs to enable large area mapping over millimeter (mm) to centimeter (cm) scales. This will eliminate potential SEM X-ray intensity variation artifacts associated with low magnification mapping and thus enhance elemental and mineralogical information in a timeous manor that was previously not possible.

→ READ MORE

Elemental and Mineral distribution in Exotic-Cu Deposits

The ability to observe elemental changes within samples is important to understand geological processes and ore deposit genesis. The dual source system which incorporates a micro-XRF on a SEM enables elemental X-ray mapping over large areas, which shows major, minor and also trace elements on the ppm scale.

→ READ MORE

Dual Source Applications for Exploration and Mining: Au-bearing Epithermal Samples

The combination of micro-XRF with SEM enables the potential to analyze samples at multiple scales, from centimeters (cm) to millimeters (mm) to micrometers (µm) and below within a solitary system. Thus, by adding the micro-XRF to an SEM you convert your SEM to a dual source system, meaning that there are 2 excitations sources, the e-beam and photon beam. Either source can be used individually, or simultaneously, to generate sample X-rays that will be measured using the same EDS detector.

→ READ MORE

Search for: **QUANTAX Micro-XRF**

Mantle Petrology and the Source of Diamonds

We present a SEM-XRF element map of a mantle garnet-spinel peridotite from the diamond-bearing Newlands kimberlite (South Africa, Kaapvaal Craton). The intensity of the various elements indicates certain minerals that are present in the sample.

→ READ MORE

Identification of Contaminants and Toxins in Soils

Large Area Mapping (Hypermaps) using SEM-XRF can be performed on samples with topography. That is, minimal sample preparation is required and the sample can be analyzed directly without any degredation. This is particularly relevant in the analysis of soils, where any form of sample preparation, such as mounting and polishing or carbon coating, may alter the specimen.

Thin Film Analysis with SEM micro-XRF

As X-rays may pass through matter, X-ray Fluorescence (XRF) allows the determination of layer thickness. Using micro-XRF on SEM, the layer analysis (thickness and composition) is rendered feasible with spatial resolution at the micrometer scale. Layer analysis is strongly based on quantification using atomic fundamental parameter (FP).

→ READ MORE

LinkedIn Posts: **#BrukerXTrace**

More Information

For more information, please contact us:

Bruker Nano GmbH

info.bna@bruker.com

Or

Andrew.Menzies@bruker.com

Stephan.Boehm@bruker.com

Thank you for your time.

Any Questions?

Innovation with Integrity