

Characterization of nanomaterials and nanostructures in the SEM using On-Axis TKD technique

Dr. Alice Bastos da Silva Fanta Dr. Daniel Goran

01 Spatial resolution: On-Axis TKD vs. EBSD vs. Conventional TKD

02 Augmented On-Axis TKD in SEM – capabilities and benefits

] 3 Invited speaker: Dr. Alice Bastos da Silva Fanta

Q&A Session

Spatial resolution EBSD vs. conventional TKD vs. On-Axis TKD

- **Physical** Spatial Resolution (PSR) is set by the interaction volume
- Effective Spatial Resolution (ESR) is given by the SW ability to correctly index patterns produced by multiple crystals

Effective spatial resolution values:

- EBSD at 20kV: down to ~50nm
- Low-kV EBSD: down to ~20nm
- Conventional TKD, a.k.a. t-EBSD: down to ~8nm
- On-Axis TKD: down to ~2nm

Experimental setup EBSD vs. conventional TKD vs. On-Axis TKD

Standard EBSD

- EBSD and standard TKD use the same hardware & software
- Non-optimum sample-detector geometry for TKD ⇔ weak signal

- Additional hardware OPTIMUS 2
- Provides optimum sample-detector geometry for TKD ⇔ strong signal

"Orientation mapping by transmission-SEM with an on-axis detector" J.J. Fundenberger et all, Ultramicroscopy, 161, 17–22, 2016. "A systematic comparison of on-axis and off-axis transmission Kikuchi diffraction" F. Niessen et all, Ultramicroscopy, 186, 158-170, 2018.

We all want to acquire orientation maps with:

- 1. Best spatial resolution to resolve even the finest crystals/features
- 2. Fastest speed possible to use lab's resources efficiently
- 3. Highest indexing rate, i.e. reliable data to help us get a realistic understanding of sample's properties

All the above is possible but it "costs" signal:

- 1. Signal to allow lowering the probe current (probe diameter) without damaging the pattern quality
- 2. Signal to compensate for the lower exposure times required by high speed pattern acquisition
- 3. Signal to produce low noise / high quality patterns enabling high indexing rates

On-Axis TKD Best spatial resolution, speed and data quality

- Important parameters:
- EHT: 30kV
- Probe current: 2nA
- Step size: 1.5nm
- Mapping speed: 320fps (3ms/point)
- Total acquisition time: 6:31min
- Zero solutions: 11.5%
- Annealing twin: ~4nm wide
- No data cleaning!

20nm Au film on 5nm Si₃N₄ membrane

On-Axis TKD Reliable data & great statistics

- Important parameters:
- EHT: 30kV
- Probe current: 1.5 nA
- Step size: 1nm
- Mapping speed: 243fps (4 ms/point)
- Total acquisition time: 19:15 min
- Zero solutions: 5.73 %
- No data cleaning!
- 3382 grains smaller than 33 nm with a mean equivalent diameter size of 13.2 nm

OPTIMUS 2 detector head for On-Axis TKD Features & benefits

- e- beam friendly materials *improved spatial resolution and minimized drift*
- Additional layer in screen structure minimized beam interference
- Redesigned screen frame easier/safer to use

High resolution BF imaging with OPTIMUS 2 20 nm Ru film deposited on 5 nm TiN & Si wafer

- BF image acquired with OPTIMUS on a high-end SEM equipped with immersion lens technology
- Pixel size. 0.5 nm
- Accelerating voltage: 29 kV
- Probe current: 0.4 nA
- Acquisition time: 3 seconds

High resolution DF imaging with OPTIMUS 2 15 nm Au film deposited on 10 nm Si_3N_4 membrane

High resolution DF image acquired at 30kV with 0.8nA probe current and a **pixel size of 1 nm**

Image is courtesy of Hong Zhang from Eurofins in Santa Clara CA, USA

© 2023 Bruker

DF & BF imaging with OPTIMUS 2 Ti 6242 alloy

Applications & benefits:

- Qualitative characterization of microstructures
- Finding area/features of interest
- Refining beam focus and astigmatism
- Ideal for drift correction
- Essential for three new SW features:
 - ESPRIT FIL-TKD
 - ESPRIT TRM
 - ESPRIT MaxYield

Ti 6242 alloy

Sample is courtesy of Ben Britton from The University of British Columbia, Canada (formerly with Imperial College London)

Ti 6242 alloy

ESPRIT FIL-TKD Enabling nano-scale TKD mapping

- Immersion mode ⇔ Strong Magnetic Field inside SEM chamber
 - Electrons are constrained within a narrow space around the optical axis

of SEM – limits their spread laterally

- Electron trajectories are affected distorted patterns
- OPTIMUS 2 and ESPRIT FIL-TKD help overcome these limitations

FIL-TKD

Goal: Achieve the best spatial resolution possible!

ESPRIT FIL-TKD Enabling nano-scale TKD mapping

- Available for certain SEMs using Full Immersion Lens technology
- Fully integrated in the pattern analysis process of ESPRIT 2
- Works for all applications except residual strain analysis
- Results show here were acquired using a +10 years old NovaNano SEM
- DISCLAIMER: Resolution difference between the two functioning modes is very likely not as dramatic on latest gen. e- columns

No magnetic field \Leftrightarrow analytical mode

With magnetic field \Leftrightarrow Ultra-High Resolution (UHR) mode

ESPRIT TRM Time Resolved Measurements

- Automatic and repetitive acquisition of time resolved images & maps
 close to real time visualization of samples during in-situ experiments
- Applicable to EDS/EBSD/TKD on SEM and EDS on TEM
- Works on same location or multiple user defined locations

"Elevated temperature transmission Kikuchi diffraction in the SEM" Fanta et all, Materials Characterization, Vol´.139, May 2018, Pages 452-462

ESPRIT MaxYield Productivity boost

Argus MAG: 73.2kx HV: 30 kV WD: 4.3 mm Px: 5 nm

ARGUS image of nanoparticles on C-lacey support film

MaxYield

ESPRIT MaxYield => key details / *benefits*:

- Acquire and binarize ARGUS/SEM images
- Use such images as masks to map sparse samples, e.g. nanoparticles, nanorods, nanotubes, etc.
- Acquire data only from the area of interest:
 - Productivity boost
 - Reduced drift induced artifacts

ESPRIT MaxYield Productivity boost

- Use masks to map sparse samples, e.g. nanoparticles, nanorods, nanotubes, etc.
- Acquire data only from the area of interest

Thank you!

Info.bna@bruker.com www.bruker.com/bna

Daniel Goran Daniel.Goran@bruker.com

Innovation with Integrity

Innovation with Integrity

On-axis TKD at DTU Nanolab

Alice Bastos da Silva Fanta

Technical University of Denmark (DTU)

Nanolab - National Centre for Nano Fabrication and Characterization

Clean room facility at DTU

Electron microscopy facility at DTU

- General experience with setting up a TKD experiment
- Some examples of TKD applications
 - Characterization of nanoparticles
 - Thin film thermostability

DTU Nanolab

Because most of the signal arriving at the detector comes from the last diffraction event

The samples are always facing the detector, not the electro beam!

DTU Setup – Dealing with charging effects

- 1. Tip: Let everything stabilize before start mapping
- 2. Tip: Measure as fast as possible
- 3. Tip: If possible, measure in low vacuum condition (water vapor)

DTU Setup – Dealing with charging effects

Setup – Dealing contamination

Always a challenge!

- We have introduced a Cryo-can and Cryo finder,
- We do our best to keep the sample and microscope clean.

• We always plasma clean the sample in the SEM chamber previous to any experiment.

300 nm

Index-rate improves significantly

Ref. : A.B. Fanta et al. Mater. Charact. 139 (2018) 452–462.

Application: Optical hydrogen sensors

In collaboration with: Christoph Langhammer and Svetlana Alekseeva (Chalmers University of Technology) **Particle-specific hydride formation**

26 particles

Ref. : S. Alekseeva et al., Nat. Commun. 8 (2017) and Nugroho et al., Nat. Materials (2019).

Application: Optical hydrogen sensors

Extend it to 1000 particles

DTU Challenge: STEM and TKD

Poor image quality in measurement position

DTU Nanolab

Ref.: Fanta, A. B. S., et al. (2019). Ultramicroscopy 206 112812. https://doi.org/10.1016/J.ULTRAMIC.2019.112812

How to deal with this?

- Tilt the detector down
- Move the detector slowly following the image shift on the SE image

Challenge: STEM and TKD

• Take advantage of the carbon contamination to re-locate the position (Sometime useful ☺)

STEM image and TKD measurement without detector movement

https://www.bruker.com

Ref.: Fanta, A. B. S., et al. (2019). Ultramicroscopy 206 112812. <u>https://doi.org/10.1016/J.ULTRAMIC.2019.112812</u>

Application: Back to the goal of analyzing 1000 particles

Optimize measurement time by using a feature recognition mask – map only where there are particles

STEM image with

Mask

AG:226.0kx HV:30 kV WD:67mm Px:8nm

A lot of particles and data to analyze

It is a powerful platform to correlate microstructurefunction at the **individual nanoparticle level**

DTU In-situ experiments

Build an SEM stage for the TEM heating chip

DENS Solution software to control heating cycle

Ref. : A.B. Fanta et al. Mater. Charact. 139 (2018) 452–462.

heating chip

Thin film dewetting– Previous to Optimus 2

In-situ dewetting of Au thin film

Map time 10min 10 nm step size

Significant microstructure changes during the map

Ref. : A.B. Fanta et al. Mater. Charact. 139 (2018) 452–462.

DTU Thermostability of thin films – Optimus 2

OPTIMUS 2

 Possibility to improve time and spatial resolution by automatically capture STEM images during heating experiments

Ref.: Fanta, A. B. S., et al. (2019). Ultramicroscopy 206 112812. <u>https://doi.org/10.1016/J.ULTRAMIC.2019.112812</u>

Thermostability of thin films DTU

200° C

250°C

(manually saved every 45 sec)

40 min map at RT ٠

Prototype

250°C (2.3 min)

200 nm Ref.: Fanta, A. B. S., et al. (2019). Ultramicroscopy 206 112812. <u>https://doi.org/10.1016/J.ULTRAMIC.2019.112812</u>

Next-step: In-situ EBSD with MEMS based heating chips

DTU Acknowledgments:

Thanks to the people who contributed to the work:

DTU: Christian Damsgaard, Christina König

<u>Former DTU</u>: Adam Fuller, Matteo Todeschini, Mario Heinig, Andrew Burrows, Hossein Alimadadi,

Mohammad Ahmed and Mamadou Mandie Kone

<u>Chalmers</u>: Sara Nilsson, Svetlana Alekseeva, Ferry Nugroho, David Albinsson, Henrik Klein Moberg and Christoph Langhammer. Screen recording during heating of Au thin films 40 x faster

200nm

Thank you for your attention