high-field-mri-banner.jpg
Contactar

Ultra High Field - Utilizing Optimal Coil Technology for Maximal Signal

Receive Arrays

For clinical systems, it was recently shown that for receive-only arrays the Signal-to-Noise-Ratios (SNR) increases super-linearly with the magnetic field strength [1]. These results underline the impressive SNR gain when moving to Ultra High Field (UHF) systems.

Besides the SNR gain itself, receive arrays coils further provide acceleration possibilities, thus having the potential to increase spatial as well as temporal resolution. For preclinical UHF imaging, array coils are available for brain, heart, spine and body and have found routine use.

References:

[1] Pohmann, R, Speck, O, Scheffler, K. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays. Magn. Reson. Med., 2016; 75: 801-809. doi:10.1002/mrm.25677
www.ncbi.nlm.nih.gov/pubmed/25820458

MRI CryoProbes

In preclinical MRI, cryogenically-cooled MRI CryoProbes [2], provide an additional sensitivity boost [3] and have found widespread use. Combined with UHF MRI, the additional gain is significant and enables highest quality images in reasonable measurement times [4]. Thus, for example, ultra high resolution in vivo mouse brain data can be easily acquired on a preclinical 15.2 Tesla equipped with a MRI CryoProbe.

coils_in-vivo-mouse-brain.jpg

In vivo mouse brain with 29 µm resolution, measured at 15.2 T with MRI CryoProbe.
Acquisition details: RARE, resolution: (29 × 29 × 200) µm³, TR: 3.5 s, TE: 25 ms, echoes: 6, slices: 7

References:

[2] MRI CryoProbes | Bruker www.bruker.com/products/mr/preclinical-mri/mri-cryoprobes.

[3] Niendorf T, Pohlmann A, Reimann HM, et al. Advancing Cardiovascular, Neurovascular, and Renal Magnetic Resonance Imaging in Small Rodents Using Cryogenic Radiofrequency Coil Technology. Frontiers in Pharmacology. 2015;6:255. doi:10.3389/fphar.2015.00255.
www.ncbi.nlm.nih.gov/pmc/articles/PMC4642111/

[4] Petiet A, Aigrot M-S, Stankoff B. Gray and White Matter Demyelination and Remyelination Detected with Multimodal Quantitative MRI Analysis at 11.7T in a Chronic Mouse Model of Multiple Sclerosis. Frontiers in Neuroscience. 2016;10:491. doi:10.3389/fnins.2016.00491.
www.ncbi.nlm.nih.gov/pmc/articles/PMC5081351/