ENC 2020 Bruker Solid State NMR Workshop: DNP Update

Shane Pawsey, Application Scientist
March 2020
NMR and MRI

Rich in Information:
- Chemical & structural resolution
- Molecular & chemical dynamics
- Abundant NMR-active nuclei
- Spatial encoding
- Functional tracking
- Non-invasive, no ionizing radiation

But, relatively low sensitivity due to small polarization (P) at thermal equilibrium:

\[P = \frac{p_+ - p_-}{p_+ + p_-} = \frac{\gamma h B_0}{2kT} \]
Increasing the Sensitivity of NMR

Increase Sensitivity by pushing spins away from thermal equilibrium: **Hyperpolarization**:

- Ultra low temperature (ULT/Brute Force)
- Optical pumping (e.g. Xenon)
- Para Hydrogen
- Dynamic Nuclear Polarization (DNP)
 - Solids DNP
 - Dissolution DNP
Dynamic Nuclear Polarization (DNP)

- Transfer polarization from unpaired electron spins to nuclear spins
 \[\gamma_e \gg \gamma_n \]
- Driven by microwave irradiation at or near EPR frequency

DNP signal \(\varepsilon = 130 \) at 395 GHz/600 MHz
Bruker DNP Product Line: Gyrotron Microwave Source

<table>
<thead>
<tr>
<th>Magnetic Field</th>
<th>EPR/µwave Frequency</th>
<th>2H NMR Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4 T</td>
<td>263 GHz</td>
<td>400 MHz</td>
</tr>
<tr>
<td>14.1 T</td>
<td>395 GHz</td>
<td>600 MHz</td>
</tr>
<tr>
<td>18.8 T</td>
<td>527 GHz</td>
<td>800 MHz</td>
</tr>
<tr>
<td>21.1 T</td>
<td>593 GHz</td>
<td>900 MHz</td>
</tr>
</tbody>
</table>
LTMAS DNP Probe Family @ 400, 600, 800 and 900 MHz

- MAS probes
 - 3.2 mm (15 kHz MAS @ 100 K)
 - HCN, HX or HXY with variety of X/Y combinations
 - low-gamma probe
 - 1.9 mm (24 kHz MAS @ 100 K)
 - 1.3 mm (40 kHz MAS @ 100 K)
 - Cold insert/eject capability
- Static probe for aligned samples
- Corrugated probe waveguide
Turbine Assembly and Insert/Eject System for 0.7 mm DNP Probe
Spinning Characteristics at Low Temperature for the 0.7 mm DNP Probe

- $T_{1\text{KBr}}$ @ 10 kHz = 788 ms $\rightarrow T_{\text{Sample}} \approx 98$ K
- $T_{1\text{KBr}}$ @ 25 kHz = 768 ms $\rightarrow T_{\text{Sample}} \approx 98.5$ K
- $T_{1\text{KBr}}$ @ 60 kHz = 730 ms $\rightarrow T_{\text{Sample}} \approx 107$ K

μ-wave heating with KBr ca. 4K
0.7 mm DNP Probe
DNP at 263 GHz/400 MHz
Using a More Compact Source

DNP with Gyrotron

DNP with Klystron
The EIK/EIO converts kinetic energy of electron beam into microwave radiation by interaction with electromagnetic waves in a series of cavities.
263 GHz Klystron in Billerica DNP Demo Lab: 5 W Output Power
(FACTOR OF 10 POWER INCREASE in 10 YEARS!)

System includes:
- 4 kW power supply
- Chiller

263 GHz Klystron with transmission line

Klystron safety shroud removed for visualization

Transmission line

263 GHz Klystron

Klystron ON
Klystron OFF

\[\varepsilon = 180 \]
263 GHz Klystron Measurements

![Graph showing DNP Signal Enhancement vs. Power at NMR Probe Base (W) for 263 GHz Klystron and 263 GHz Gyrotron.](image)
Microwave Transmission to NMR Sample

- **Corrugated waveguide:**
 - Negligible ohmic loss for Gaussian beam
 - Loss possible due to mode conversion in case of tilt or offset
 - Broadband
 - 19 mm ID 263 GHz corrugations
 - 16 mm ID 440 GHz corrugations

\[
\begin{align*}
2a & \\
p & = \lambda/3 \\
d & = \lambda/4 \\
w & < 0.5p \\
\text{Gaussian beam waist} & = 0.64a
\end{align*}
\]

- **Directional coupler** for frequency and power measurement
263 GHz Klystron at the EPFL
Solid State DNP Application Areas

- **Biological Samples**
 - Proteins
 - Membranes proteins
 - Fibrils
 - Whole Cell...

- **Materials**
 - Nanoparticles
 - Catalysts
 - Mesoporous samples
 - Bio-Materials
 - Functionalized silica

- **Small Organic Molecules**
 - Pharmaceutical applications

- **Polymers**
 - Natural
 - Synthetic

- **Solid State DNP**

 - Higher sensitivity and reduction of acquisition time
 - *Opens new application areas for NMR*
DNP Applications: Materials

- **Functionalized materials**
- **Mesoporous silica, alumina**
- **Hybrid organic-silica materials**
- **Nanoparticles**
- **Metal Organic Framework (MOFs)**

Field of applications
Photonic, sensors, bio-material, catalyst, drug delivery, separation processes, medical imaging

Detection: ^{13}C, ^{29}Si, ^{15}N, ^{119}Sn, ^{27}Al, ^{17}O, ^{89}Y

2D experiments
Characterization of the materials at the molecular level
Organic Thin-Film Semiconducting Devices

✓ Organic thin-film semiconducting devices
 • Organic Light-Emitting Diodes (OLEDs)
 • Organic Solar Cells (OSCs)

✓ Properties:
 • Charge carrier mobility
 • Light emission
 • Light out-coupling

✓ Depend on:
 • Intra- and inter-molecular structure
 • Orientation of organic molecules

✓ OLEDs and OSCs are in amorphous state
 • Solid State NMR: limited amount of material, low S/N
 • Enhanced sensitivity by solid state DNP
Organic Thin-Film Semiconducting Devices (OLEDs)

Sample: \textit{POPy}_2

Radical: \textit{bTbK}

Pile of plates and put into \(\Phi 4\) mm glass tube

Place the plates perpendicular to the static field and measure alignment

Total amount of sample: 52 \(\mu\)g \(\times\) 12 plates = 0.62 mg

Suzuki K. \textit{et al.}, \textit{Angewandte} 2017, DOI: 10.1002/anie.201707208
Static DNP Probe 400 MHz/263 GHz
Static DNP Probe 400 MHz/263 GHz
Organic Thin-Film Semiconducting Devices (OLEDs)

- Vacuum deposit \(\text{POPy}_2 \): P=0 perpendicular to SiO\(_2\)
- Drop cast \(\text{POPy}_2 \): isotropic random orientation

Fit by Legendre moment

\[
\langle P_n \rangle = \frac{\int_0^\pi p(\theta)P_n(\cos \theta) \sin \theta \, d\theta}{\int_0^\pi p(\theta) \sin \theta \, d\theta}
\]

Suzuki K. et al., Angewandte 2017, DOI: 10.1002/anie.201707208
263 GHz Klystron $^{15}\text{N}$$-^{13}\text{C}$ Correlation in Photocatalytic Materials

- Polymeric Carbon Nitride: Photocatalysts in solar production of H_2

- With large DNP gain (71), complex correlations can be acquired in reasonable amount of time

Li X. et al., Angew. Chem. Int. Ed., 2018
Batteries: A Complex System

- Performance depends on the interactions between all cell components
- What are the interactions between the components: active material and electrolyte?
Battery Characterization by Solid State DNP

✓ **Stable Solid Electrolyte Interphase (SEI)**
 - Critical for performance and lifetime of rechargeable batteries
 - Properties depend on chemistry of surface layer

✓ Challenging to study by conventional structural tools (X-Ray)
 - Requires molecular level insight
 - NMR: low sensitivity of the organic components of the SEI

✓ SEI: reduced Graphene Oxide (rGO) in a lithium ion cell
 - 13C DNP experiments

![Before cycling](image1.png)
![After cycling](image2.png)
Battery Characterization by Solid State DNP

In less than 1 hour with DNP...

The organic phase in the SEI

Natural abundance 13C NMR with DNP

13C assignment:
- Li formate
- Li succinate
- Li acetate
- Li ethyl carbonate
- Dimethyl carbonate

Solid-State DNP NMR

- **1980 - 2008**: mostly limited to true specialists
- Now a well-established commercial product – 39 total Bruker systems
Solid-State DNP Spectrometers: 39 Installed Spectrometers

<table>
<thead>
<tr>
<th>400 MHz/263 GHz DNP</th>
<th>600 MHz/395 GHz DNP</th>
<th>800 MHz/527 GHz DNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Billerica, MA, USA 2008 (Bruker demo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berlin, DE, 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lausanne, CH, 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grenoble, FR, 2011, 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utrecht, NL, 2011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wissembourg, FR, 2012 (Bruker demo)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyon, FR, 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankfurt, DE 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Darmstadt, DE 2013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ames, IA, USA 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAUST, Jeddah, SA, 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Barbara, CA, USA 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melbourne, AUS 2016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rehovot, Israel 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyoto, Japan 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tsukuba, Japan 2017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marseille, France 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Billerica, MA, USA, 2012 (Bruker demo)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guelph, ON, Canada, 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goettingen, DE, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New York, NY, USA, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juelich, DE, 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tallahassee, FL, USA 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ETH Zurich, CH, 2014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Columbus, Ohio, USA '15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nottingham, UK, 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nijmegen, NL, 2015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dallas, Texas, USA, 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doha, Qatar, 2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abu Dhabi, UAE, 2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>San Diego, USA, 2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Utrecht, NL, 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lyon, FR, 2013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Munich, DE, 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paris, FR, 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Juelich, DE, 2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Berlin, DE, 2018</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 1 593 GHz, Lausanne, CH (2017)</td>
</tr>
</tbody>
</table>

Eighteen 263 GHz DNP: 40% biological, 60% material
Fourteen 395 GHz DNP: 75% biological, 25% material
Six 527 GHz DNP (+one 593 GHz): 75% biological, 25% material
Acknowledgments

Weizmann Institute of Science
Rehovot, Israel
Michal Leskes

Aix-Marseille Université
Marseille, France
Fabio Ziarelli, Stéphane Viel
Mollica Guillia, Pierre Thureau
Olivier Ouari, Paul Tordo

FMP
Berlin, Germany
Hartmut Oschkinat

UPMC
Paris, France
Christian Bonhomme

Bruker
Fabien Aussenac, Ivan Sergeyev, Melanie Rosay, Christian Reiter, Armin Purea, Frank Engelke

Université de Strasbourg
Strasbourg, France
Evgeniy Salnikov, Burkhard Bechinger

CEA Grenoble
Grenoble, France
Daniel Lee
Gaël de Paëpe

Institut de Science des Matériaux
Mulhouse, France
Severinne Rigolet

CRMN
Lyon, France
David Gajan
Anne Lesage

Kyoto University Uji
Kyoto, Japan
Katsuaki Suzuki
Hironori Kaji

James Hook
Xiaobo Li
Innovation with Integrity