Outline: CryoProbes

- CryoProbes
 - CryoProbe Prodigy Overview
 - Helium CryoProbe Overview
 - Cooling Unit CU/2 & CU/3
 - New Options and Models
 - 3mm TCI 800 MHz – 1 GHz
 - 5mm TXO vs. TCI
 - 5mm BBO 800 MHz
CryoProbe™ Prodigy
Economical and Affordable

- Price significantly less than a conventional He-cooled closed loop CryoProbe
- Impressive performance boost with **minimum operating** and **maintenance costs**
- **Long service intervals** of two years
- Probe package comprises only control unit and a liquid N2 vessel
- **Easy siting** with no additional infrastructure
<table>
<thead>
<tr>
<th>CryoProbe Prodigy</th>
<th>400 MHz</th>
<th>500 MHz</th>
<th>600 MHz</th>
<th>700 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prodigy BBO</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Prodigy TCI</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
17.5mg Quinine (100mM) in DMSO in a standard 5mm tube.

Expt. Time: 16 h
15mM Ajmalicin in DMSO-d$_6$

2D 1H-13C HMBC

ns = 2;

TD = 4k x 256

12 min
CryoProbe Prodigy TCI 500 MHz
$^{1}H-^{13}C$ NOESY-HSQC

- Lb-FABP 1.3 mM
- $N_s = 8$
- $TD = 2k \times 512$
- 120 ms mixing
- 90 min

CryoProbe™ Prodigy

Summary

• Sensitivity enhancement
 ➢ **2...3** for **all nuclei** (equivalent to >300 MHz higher field)
 ➢ More than **5 x faster** compared to equivalent RT probe
 ➢ Increased **sample throughput** or **reduction in sample amount**
 for labs in academia and industry

• Exciting features for
 ➢ Routine & research applications
 ➢ Small molecule structural work
 ➢ Bio-NMR: excellent solvent suppression, power handling
16 years CryoProbe success story

>1600 CryoProbes delivered to customers

... the evolution is going on!
CryoProbe product portfolio is growing
CryoCooling Unit Generations & Support

• **Cooling Unit CU/2:**
 - End of production 2005
 - **End of Service (EOS) January 2018,** support on best effort at reasonable endeavour basis

- Z49290 – 2m
- Z70377 – 3m
- Z70917 – 4m
- Z70929 – 5m
- Z74368 – 6m
- Z71863 - ICE
CryoCooling Unit Generations & Support

• **Cooling Unit CU/3:**
 • End of production 2006
 • **End of Service (EOS) January 2018,** support on best effort at reasonable endeavour basis

• Z74852 – 2m
• Z74853 – 3m
• Z74854 – 4m
• Z74855 – 5m
• Z74856 – 6m
• Z74857 - ICE
CryoProbe Portfolio (Spectroscopy) Helium cooled

<table>
<thead>
<tr>
<th>CryoProbes</th>
<th>400</th>
<th>500</th>
<th>600</th>
<th>700</th>
<th>800</th>
<th>850</th>
<th>900</th>
<th>950</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCH C-H-D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5mm TCI H-C/N-D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3mm TCI H-C/N-D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>1.7mm TCI H-C/N-D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCI H/P-C/N/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCI H/F-C/N/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXO C/H-N-D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>DUX 2H</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DUL-C-H-D 10mm</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBFO</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBO H&F</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5mm TXO CryoProbes

- Temperature range: -40° C...+80° C (optional 0° C...135° C)
- All nuclei benefit from cold preamplifier:
 - ^{13}C, ^{15}N, ^{1}H, ^{2}H
- Z-Gradient

- Two versions:
 - ^{13}C optimized (default)
 - ^{15}N optimized (optional: ~30% gain for ^{15}N, at the expense of ^{13}C SiNo)
5mm TCI CryoProbes

- Temperature range: $-40^\circ\text{C}...+80^\circ\text{C}$ (optional $0^\circ\text{C}...135^\circ\text{C}$)
- Cold preamplifier: ^1H, ^{13}C, ^2H,
 - New: optional ^{15}N cold preamplifier
- Optional: ^1H tuneable to ^{19}F
- Z-Gradient
 - Optional XYZ-Gradient
5mm QCI HPCN CryoProbes

- Temperature range: -40° C...+80° C (optional 0° C...135° C)
- Cold preamplifier: 1H, 13C, 2H,
 - New: optional 31P or 15N cold preamplifier
- Optional: 1H tuneable to 19F
- Z-Gradient
10mm DUL CryoProbes

- Temperature range: 0° C...+135° C
- Cold preamplifier: 1H, 13C, 2H,
- Z-Gradient (2 G/cmA)
- New: multi-nucleus “MNP” 10mm CryoProbe
 - Up to 5 X nuclei (31P-15N frequency range)
800 MHz 3mm TCI
3mm 800 MHz TCI 1H Watersuppression: 2mM Lysozyme

- 1D 1H Presat using composite read pulse & crusher gradient
- ns = 8
- AQ = 1s
3mm TCI 800 MHz 1H-15N HSQC: 2mM Lysozyme

- 2D 1H-15N HSQC with flip-back & SI at natural abundance
- ns = 16
- 128 increments
- AQ = 80ms
- Expt. Time 38 min
- 7 uM 15N species !!
800 MHz 5mm BBO
5mm CP-BBO 800 MHz

- 5mm BBO H&F Z-Gradient CryoProbe
 - $^1\text{H} - ^{19}\text{F};$
 - $^{31}\text{P} - ^{15}\text{N};$
 - ^2H

- All nuclei benefit from cryogenically cooled preamplifier

- Temperature range
 - $-40^\circ\text{C} \ldots +80^\circ\text{C}$
 - $0^\circ\text{C} \ldots +135^\circ\text{C}$
5mm CP-BBO 800 MHz

- Polymer in TCE-d$_2$
- 1D 1H
- NS = 16
- ZG30
- TE = 400 K

x 4096
• Polymer in TCE-d$_2$
• 1D 13C{1H}
• Ns = 1024
• ZGPG30
• TE = 400 K
• Expt. Time 47 min
5mm CP-BBO 800 MHz

- 10mg ^{195}Pt-complex in CD$_2$Cl$_2$
- 1D ^1H
- NS = 1
5mm CP-BBO 800 MHz ^{31}P detection

- 10mg ^{195}Pt-complex in CD$_2$Cl$_2$
- 1D ^{31}P {^1H}
- NS = 32

^{31}P-^{195}Pt: 1742 Hz
5mm CP-BBO 800 MHz ^{195}Pt

- 10mg ^{195}Pt-complex in CD$_2$Cl$_2$
- 1D $^{195}\text{Pt} \{^1\text{H}\}$
- NS = 256
- Expt. Time: 1 min 42 sec
5mm CP-BBO 800 MHz ^{195}Pt

- 10mg ^{195}Pt-complex in CD$_2$Cl$_2$
- $^{195}\text{Pt} \{^1\text{H}\}$
- NS = 128

- T1 inversion-recovery
- T1 = 21 msec
5mm CP-BBO 800 MHz 195Pt

- 10mg 195Pt-complex in CD$_2$Cl$_2$
- 1H - 195Pt HMQC
- TD 1k x 128
- NS = 8
- Cnst2 = 50 Hz
- Expt. Time 18.5 min
1 GHz 5mm TCI
ENC 2016 Announcement: World's first shielded **Aeon 1 GHz** System installed

- Active shielding reduces space requirements by > one order of magnitude
- **Aeon 1 GHz** magnets leverage advanced BEST superconductors
- Active refrigeration eliminates LN2, reduces LHe boil-off essentially to zero
- **New GHz-class magnet, novel Cryoprobes, 111 kHz MAS probes, and new NMR methods expand frontiers in structural biology, membrane protein and intrinsically disordered protein (IDP) research**

Aeon 1 GHz at Research Center for Bio-Macromolecules at University of Bayreuth
2mM Sucrose in H$_2$O:D$_2$O 9:1

Resolution: 10%
Hump: 9.7 / 16.7 Hz

Composite pulse & crusher gradient presat
1 GHz 5mm TCI: CC-TOCSY

C/N-labeled ubiquitin

13C detected CC-TOCSY

NS = 16

TD = 4k x 128

Mixing = 20ms @ 13.5 kHz

Expt. Time 40 minutes
1 GHz relaxation-optimized 3D

C/N-labeled ubiquitin

3D BEST-TROSY-HNCOCACB

NS = 2
TD = 1k x 64 x 256

D1 = 200ms

NUS: 12.5 %
CS processing

Expt. Time: 28 minutes

(traditional sampling: 3.75 hours)
CryoProbe: X nucleus detection
CP-TXO vs. CP-TCI
X-nucleus detection: $^{13}\text{C} \ & \ ^{15}\text{N}$

- Relative Sensitivity provided sample is uniformly labeled:
 - $\gamma_{\text{H}} = 26,7522208 \ [10^7 \text{ rad s}^{-1} \text{ T}^{-1}]$
 - $\gamma_{\text{C}} = 6,728286 \ [10^7 \text{ rad s}^{-1} \text{ T}^{-1}]$
 - $\gamma_{\text{N}} = -2,7126189 \ [10^7 \text{ rad s}^{-1} \text{ T}^{-1}]$

- Signal-to-noise is proportional to $\gamma^{3/2}$
 - $\text{S/N}_{\text{carbon}} = 0,13 \ \text{S/N}_{\text{protons}}$
 - $\text{S/N}_{\text{nitrogen}} = 0,18 \ \text{S/N}_{\text{carbon}}$
 - $\text{S/N}_{\text{nitrogen}} = 0,03 \ \text{S/N}_{\text{protons}}$
Probe design principles

Proton on inner Coil: “INVERSE”

X-Nucleus on inner coil: “OBSERVE”

^1H (Proton)

TCI, QCI

X-nuclei C, N

DCH, TXO
Probe design principles

Proton on inner Coil: “INVERSE”

^1H (Proton)

X-Nucleus on inner coil: “OBSERVE”

X-nuclei C, N

X-nuclei C, N, D

TCI, QCI

DCH, TXO

^1H (Proton)
Signal-to-noise ratio (S/N) INVERSE / OBSERVE CryoProbes

Comparison 5mm TCI & TXO

- TCI using 5mm tube
- TCI using shaped tube
- TCI using 3mm tube
- TXO

Salt concentration NaCl [mM]

0 to 500 on the x-axis, 0.00 to 1.00 on the y-axis.
800 MHz CP-TXO

- 2mM Sucrose in H₂O:D₂O 9:1
- Presat using composite read pulse & crusher gradient
- Resolution: 13%

Data courtesy of Prof. Ichio Shimada, Dr. Koh Takeuchi, AIST, Tokyo
IDPs & (UHF-)NMR: IDPs are challenging for NMR

- Due to lack of 3D structure massively reduced dispersion for 1H
- IDPs suffer inherently from much more NMR signal overlap

ubiquitin 295.7 K \hspace{2cm} \alpha\text{-synuclein} 295.7 K
IDPs & (UHF-)NMR

IPDs create new requirements for NMR methods and technology

- Highest sensitivity for ^1H, ^{13}C, ^{15}N
- Highest signal dispersion
- Highest fields in GHz range
- ^{13}C direct detection (5mm CP-TXO, 5mm CP-TCI)
- ^{15}N direct detection
- ‘In-cell’ NMR

- High-dimensionality, fast experiments (4D, 5D, 6D,…) combined with NUS, APSY, parallel NMR
- New tools: multiple receivers, 3mm CP-TCI, triple-gradient CRP’s
800 MHz CP-TXO

- 1mM T1RNAse in H$_2$O:D$_2$O 9:1
- 15N data: refocused INEPT
- NS = 128
- Expt. Time 3 minutes

Data courtesy of Prof. Ichio Shimada, Dr. Koh Takeuchi, AIST, Tokyo
800 MHz CP-TXO

- 1mM T1RNAse in H$_2$O:D$_2$O 9:1
- 13C detected COCA CTIA
- NS = 1
- Expt. Time 10 minutes

Data courtesy of Prof. Ichio Shimada, Dr. Koh Takeuchi, AIST, Tokyo
800 MHz CP-TXO

- 1mM T1RNAse in H$_2$O:D$_2$O 9:1
- 13C detected (H)COCA IARE
- NS = 1
- D1 = 100ms
- Expt. Time 71 seconds

Data courtesy of Prof. Ichio Shimada, Dr. Koh Takeuchi, AIST, Tokyo
Direct or indirect?

1H or X detection?
Sample loss [frequency]

Solvent dependence \(\sim \nu^4 \)
Salt dependence \(\sim \nu^2 \)
13C detection: CON
950 MHz TCI

C/N-labeled ubiquitin

13C detected CON using IPAP virtual homodecoupling

NS = 2

TD = 1k x 800

Expt. Time 32 minutes
15N detection: NCO
950 MHz TCI (active 15N)

C/N-labeled ubiquitin

15N detected NCO

NS = 48

TD = $2k \times 144$

Expt. Time 150 minutes
\(^{13}\text{C} \text{ CON vs. } ^{15}\text{N} \text{ detection NCO}\)

\(^{13}\text{C} \text{ detected CON, 30 min}\)

\(^{15}\text{N} \text{ detected NCO, 150 min}\)

\(^{13}\text{C} \text{ vs. } ^{15}\text{N} \text{ detection: neglecting relaxation one expects theoretically 5:1}\)

For the CON/NCO comparison of ubiquitin at 950 MHz and 298 K one obtains \(~2.5:1\)
Fig. 2 Frequency dependence from 100–1800 MHz of the full resonance linewidth at half height for amide groups in TROSY experiments calculated for three correlation times of $\tau_c = 20$, 60 and 320 ns, which represent spherical proteins with molecular weights of 50,000, 150,000 and 800,000 M_r.

- **a.** $^1\text{H}^N$ linewidth.
- **b.** ^{15}N linewidth.

The calculation used $\Delta \sigma(^{15}\text{N}) = 155$ p.p.m. and $\Delta \sigma(^1\text{H}^N) = 15$ p.p.m.; axial symmetry was assumed for both tensors; the angle between the principal tensor axis and the N-H bond was assumed to be 15° for ^{15}N and 10° for $^1\text{H}^N$; $d_{\text{N-H}} = 0.104$ nm; effects of long-range dipole-dipole couplings with spins outside of the $^{15}\text{N}-^1\text{H}$ moiety were not considered.
15N detected coupled INEPT - TROSY

TCI 950 MHz
C/N-labeled ubiquitin, 298 K

15N detected HX-INEPT, fully coupled: illustrating the TROSY effect

NS = 64
TD = 4k x 256

Expt. Time 7 hours
15N detected coupled INEPT - TROSY

TCI 950 MHz
C/N-labeled ubiquitin, 278 K

15N detected HX-INEPT, fully coupled: illustrating the TROSY effect

NS = 32
TD = 4k x 256

Expt. Time 3.5 hours
15N detected coupled INEPT - TROSY

950 MHz TCI
C/N-labeled ubiquitin

15N detected HX-INEPT

fully coupled: illustrating the TROSY effect as a function of temperature
Outline: CryoProbes

- CryoProbes
 - CryoProbe Prodigy Overview
 - Helium CryoProbe Overview
 - Cooling Unit CU/2 & CU/3
 - New Options and Models
 - 3mm TCI 800 MHz – 1 GHz
 - 5mm TXO vs. TCI
 - 5mm BBO 800 MHz
Acknowledgements

• Prof. P. Rösch, Dr. K. Schweimer, University Bayreuth

• Prof. Alexander Breeze, University Leeds
• Prof. Tom Frenkiel, MRC Mill Hill

• Prof. Ichio Shimada, Dr. Koh Takeuchi, AIST, Tokyo

• Prof. Göran Karlsson, Swedish NMR Centre, Gothenburg

• Klemens Kessler, Nicolas Freytag and Probe R&D

• Till Kühn, Aitor Moreno, Helena Kovacs, Sandra Loss, Frank Schumann, Barbara Perrone, Wolfgang Bermel, Daniel Mathieu, Klaus Zick, Clemens Anklin