Isotopic Fine Structure

- Beyond the Molecular Realm: Unambiguous Elemental Formula Determination
Resolve Beyond the Molecular Realm

View Natures Signatures

- Discover new chemical information by resolving unique isotopologues
- Confirm fundamental nuclear signatures to reveal the ‘true molecular formula’, by routinely working at resolving powers (RP) above RP=500,000, having easy access to RP > 1,000,000 when needed
- The exceptional capability of ParaCell™ technology enables you to work beyond the molecular realm*

Isotopic Fine Structure (IFS)

The value of fundamental nuclear signatures

- Isotopic Fine Structure (IFS) is the unique mass spectral signature arising from naturally occurring isotopes within the molecule being measured.

- Classically, the isotopic pattern was described using the isotopes of carbon ($^{13}\text{C}_1$, $^{13}\text{C}_2$), or more generally $A+1$, $A+2$, (see figure on opposite page)

- The $A+1$ IFS pattern consists of ^{15}N, ^{33}S, ^{13}C and ^2H isotopes, while IFS in the $A+2$ pattern has ^{18}O and ^{34}S isotopes. Combinations of these elements create unique patterns thanks to different mass defects of the isotopic contributions.

Isotopic fine structure is an EXACT fingerprint for every possible molecular configuration.
>1 Million Resolving Power

IFS unravels molecular formulae of unknown species

- The strong A+2 isotope suggests Chlorine.
- Sulfur-34 is hidden even at RP = 500,000, so we need the ability to access higher resolution to resolve peaks that are not of equal intensities.
- At eXtreme Resolving powers, isotopologues yield true qualitative molecular information on our unknown.
Eliminate Errors Using Heteroatom Mass Spectrometry

- Requires >500,000 RP to do it routinely
- Able to acquire full mass spectrum, not only a subset
- Perfect for quantitation of neutron labelled (\(^7\)H,\(^{15}\)N) tags

Unknown sample is Reactive Blue 4 (C\(_{23}\)H\(_{14}\)Cl\(_2\)N\(_6\)O\(_8\)S\(_2\))
Sulfur and S-omics

IFS allows discovery of completely new Sulfur containing metabolites with health promoting properties

The IFS approach enables the ability to rapidly identify sulfur containing metabolites and calculate single sum formulas for each, increasing both the speed and accuracy of the workflow. The incredible power of this workflow is that with extreme resolving power and sum formula determination, rapid screening for other heteroatom (N & O) containing metabolites is also possible.

Highlight:

In 2013, Prof. Kazuki Saito, of the RIKEN Plant Science Center (group photo below), was acknowledged with an award for one of the top downloaded papers. Prof. Kazuki Saito has been selected as a highly cited Researcher in 2014 & 2015 by Thomson Reuters in the Plant & Animal Science field and won the 2016 Japanese Society of Plant Physiologists award.

This S-atom-driven approach afforded an efficient chemical assignment of S-containing metabolites, suggesting its potential application for screening not only S but also other heteroatom-containing metabolites in MS-based metabolomics.*

References

Ultrahigh resolution metabolomics for S-containing metabolites. Current Opinion in Biotechnology (available online, print 2017)

Revisiting anabasine biosynthesis in tobacco hairy roots expressing plant lysine decarboxylase gene by using 15N-labeled lysine. Plant Biotechnology (2014)

Metabolomics for unknown plant metabolites. Analytical and Bioanalytical Chemistry (2013)

Breakthrough discoveries by accessing information from fundamental nuclear signatures
An Invitation to Push the Frontiers of Scientific Discovery

Imaging

In situ label-free imaging for visualizing the biotransformation of a bioactive polyphenol

Kim, Fujimura, Hagihara, Sasaki, Yukihi, Nagao, Miura, Yamaguchi, Saito, Tanaka, Wariishi, Yamada and Tachibanad

Scientific Reports, 3, 2805 (2014)

IFS analysis allows for the visualization of spatially-resolved biotransformation based on simultaneous mapping of EGCG and its phase II metabolites. Complements conventional molecular imaging techniques, and can contribute to biological discovery.

Metabolomics

Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation

Sellers, Fox, Bousamra, Slone, Higashi, Miller, Wang, Yan, Yuneva, Deshpande, Lane and Fan

IFS enables the ability to trace biosynthetic pathways. 13C labeled glucose is used to determine fluxomics. High resolution mass spectrometry is used to resolve isotopomers and properly determine the amount of 13C enrichment in various lipids.

Proteomics

Resolving Isotopic Fine Structure to Detect and Quantify Natural Abundance- and Hydrogen/Deuterium Exchange-Derived Isotopomers

Liu, Easterling, and Agar

Applies IFS to the HDX workflow. It overcomes a past limitation by using IFS (a real solution). Using ISF, one can simply count the number of deuterons in each one of the peptides, eliminating the need to make any guesses or utilize complex math. A very simple solution to a complex problem.

Natural Products

Synthesis of 7-15N-Oroidin and Evaluation of Utility for Biosynthetic Studies of Pyrrole–Imidazole Alkaloids by Microscale 1H-15N HSQC and FTMS

Wang, Morinaka, Reyes, Wolff, Romo and Molinski

Isotope labelling is used to follow biosynthetic pathways. IFS allows for an easy calculation of the amount of 15N enrichment as compared to the natural abundance of Oroidin. By feeding live sponges 15N foods, various biosynthetic pathways can be identified.
Isotopic Fine Structure

Breakthrough discoveries by accessing information from fundamental nuclear signatures