Native MS Solutions

- scimaX MRMS: Perfectly designed for Native MS
The critical requirement for native MS is an optimal pressure gradient between the electrospray source and the mass analyzer. The ion path on the scimaX MRMS (magnetic resonance mass spectrometry) enables the transmission of intact biomolecular complexes into the ParaCell, allowing for extreme resolution analysis.

Now fragile fragment-protein, protein-substrate, multi-protein biomolecular complexes, membrane proteins with nanodiscs, mAbs, and native protein top-down analysis can all be analyzed on a standard (unmodified) scimaX.

Standard features with scimaX

- CID: collision induced dissociation
- ECD: electron capture dissociation
- EID: electron induced dissociation
- ETD: electron-transfer dissociation
- SORI-CID: sustained off-resonance irradiation collision-induced dissociation
- CASI: continuous accumulation of selected ions
Native Mass Spectrometry: An Essential Tool for Modern Structural Biology

Successful analysis of large proteins and their complexes requires three key conditions to be met. First, the proteins must be transmitted and detected without breaking intramolecular bonds. Secondly, the protein must be sufficiently desolvated to allow observation of the free protein ions. Finally, the extraordinary amount of charge on the molecules must not overwhelm the detector leading to space charge or coalescence issues. The scimaX and ParaCell technologies were designed with these goals in mind and are proven in labs worldwide for native MS experiments.

Native MS of Protein Complexes (15T MRMS)

Successful analysis of large proteins and their complexes requires three key conditions to be met. First, the proteins must be transmitted and detected without breaking intramolecular bonds. Secondly, the protein must be sufficiently desolvated to allow observation of the free protein ions. Finally, the extraordinary amount of charge on the molecules must not overwhelm the detector leading to space charge or coalescence issues. The scimaX and ParaCell technologies were designed with these goals in mind and are proven in labs worldwide for native MS experiments.

Proprietary ParaCell detector with patented magnetron control technology. Superior trapping capacity for high m/z, highly charged ions.

Native Protein Complexes using MRMS - Courtesy Joe Loo, UCLA

“Native mass spectrometry and top-down proteomics are starting to impact studies in structural biology and medicine – and Bruker has all of the tools necessary for these growing technologies.”

Professor Joe Loo, University of California, Los Angeles, USA
Native MS Applications for Fragment Based Drug Discovery

MRMS takes on the challenge of discovering new drugs for Malaria

Advancing the frontiers of Fragment-Based Drug Design (FBDD), Professor Ron Quinn and co-workers of the Griffith Institute for Drug Discovery, analyzed a specially curated natural products fragment library of over 600 unique compounds against 62 separate potential malaria drug protein targets.[1] Using MRMS, 79 fragments were identified interacting with 31 proteins and later shown to have in vitro activity against Plasmodium falciparum, a parasite that induces severe malaria in humans. 13 of these compounds had IC_{50} values less than 45 µM, which is uncommon for leads from fragment libraries.

Malaria causing, crescent shaped Plasmodium falciparum gametocyte in blood smear

Observe free and bound protein target

Weak binding (K_{d} > 10 µM) interactions typical in FBDD are routinely preserved and observed by MRMS. The balanced ion optics require no special modifications for native MS.

Six Proven Reasons for Using the scimaX MRMS for Native MS

1 Ion path leaves fragile non-covalent interactions intact
Bruker’s perfectly balanced MRMS ion optics have always been the most efficient in the industry for native MS – no changes to vacuum or a separate, special instrument needed. Complexes are desolvated but not disrupted.

2 Only instrument to offer broadband extreme resolution
Only Bruker MRMS offers the ability to detect molecules at 200 m/z at 20 million resolution and ppb mass accuracy while also providing resolving power in the hundreds of thousands at 5000 m/z.

3 Extreme Sensitivity
Protein concentrations ranging from 100 µM to 10 nM have been observed, enabling a wide range of ligand affinities to be studied and compared (> 100 µM often results in aggregation).

4 scimaX easily interfaces to multiple ion sources including cIEF
Bruker’s sources are at ground allowing easy interface of most custom ion sources.

5 The ultimate companion for HTS and FBDD – eliminate your false positives
Native MS on scimaX is the best tool for distinguishing specific and non-specific interactions as well as determining stoichiometry of binding.

6 scimaX is the most flexible instrument in the industry with native MS capabilities
scimaX not only excels at native MS, but also MALDI Imaging, isotopic fine structure, metabolomics, petroleomics, and more.
Proven MS technology for routine analysis of native protein complexes

For Research Use Only. Not for Use in Clinical Diagnostic Procedures.

Bruker Daltonik GmbH
Bremen · Germany
Phone +49 (0)421-2205-0

Bruker Scientific LLC
Billerica, MA · USA
Phone +1 (978) 663-3660

ms.sales.bdal@bruker.com · www.bruker.com

Scan the QR-Code for more details