A metabolomic approach to assess neurotoxic effects of Imidacloprid on the freshwater snail *Lymnaea Stagnalis*
Background - Imidacloprid

- **Neonicotinoids - New generation of neuro-active insecticides**
- **High water solubility**
- **High environmental occurrence**
- **Evidence of a connection to honey-bee colony collapse disorder**
- **EU imposed a number of use restrictions**

 but its use it is still allowed in greenhouses

In the Netherlands:

- > 1 µg/L
- < 1 µg/L
- < 0.1 µg/L

Picture taken from Atlas Bestrijdingsmiddelen in Oppervlaktewater

http://www.bestrijdingsmiddelenatlas.nl/
Objective

- Imidacloprid affects nicotinid acetylcholine esterase (nAchRs) receptors of insects
- Low affinity for mammals nAChRs has been shown, but what for invertebrates and aquatic species?

Macro-Invertebrate Decline in Surface Water Polluted with Imidacloprid

Tessa C. Van Dijk, Marja A. Van Staalduinen, Jeroen P. Van der Sluijs*
Aim of the study

Study sub-lethal neurotoxic effects in non-target invertebrate specimen exposed at environmentally relevant concentrations of Imidacloprid

Lymnaea Stagnalis CNS
Method - Chemical Analysis

SNAIL CNS

EXTRACTION

MeOH/H$_2$O fraction

Chloroform fraction

TARGETED ANALYSIS
neurotransmitters

UNTARGETED ANALYSIS
Polar metabolites

UNTARGETED ANALYSIS
Non Polar Metabolites

ANALYTICAL STRATEGY

ANALYTICAL METHOD

LC-QQQ

HILIC - (ESI) TOF

GC – (APCI) TOF

IIVM Institute for Environmental Studies
Data Analysis workflow - PathwayScreener

- Targeted metabolomics list based on MSMLS library (e.g. IROA Technologies)
- Batch processing for target analysis in PathwayScreener
- t-test with FDR correction in ProfileAnalysis

BIOMARKER DISCOVERY

METABOLIC NETWORK
Data Analysis workflow - Pathway Screener

Target list in CSV format based on metabolite library of standards

Pathway screener – Targeted metabolomics batch processing

Profile Analysis - t-test with FDR p values
PathwayScreener – Review Screening results
ProfileAnalysis – Volcano Plot and multiple t-test

Sample Table

<table>
<thead>
<tr>
<th>File Name</th>
<th>Include</th>
<th>Exposure Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>D210Dewy10_F1-P1.0_1.1_556</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_1.2_857</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_598</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_599</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_600</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_698</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_699</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_700</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_701</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_702</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
</tbody>
</table>

Bucket Table

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Name / Formulas</th>
<th>Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>D210Dewy10_F1-P1.0_1.1_556</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_1.2_857</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_598</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_599</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_2.0_600</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_698</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_699</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_700</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_701</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
<tr>
<td>D210Dewy10_F1-P1.0_3.0_702</td>
<td>Indistinguishable tug/tugL</td>
<td></td>
</tr>
</tbody>
</table>

T-Test Exposure Concentrations

T-Test Exposure Concentrations

T-Test Exposure Concentrations
Data Interpretation of the snail exposure is ongoing

The results will be published soon in a peer-reviewed journal
Conclusions

Pathway Screener

- The Bruker PathwayScreener software is very useful in the data analysis workflow in combination with Profile Analysis.
- Important aspects are the assessment of identified peaks, use of target list of metabolites.
- Important package to assess metabolomic data and to discover biomarkers.
Thanks

Prof. dr J. de Boer
Dr. M.H. Lamoree
Dr P.E.G. Leonards

Sara Tufi

Acknowledgements
This study was carried out within the Marie Curie EDA-EMERGE Project (MRTN-CT-2012-290100).

Novel tools in Effect Directed Analysis for identifying & monitoring emerging toxicants on a European scale