

MALDI BIOTYPER®

MBT HT Filamentous Fungi Module

A mighty mold solution

Tackle the filamentous fungi challenge

The MALDI Biotyper has revolutionized the identification of microorganisms within the past decade, setting new standards in speed, ease of use, reliability and cost-effectiveness. But even with state-of-the-art MALDI-TOF mass spectrometry, the identification of molds and multicellular fungi still persists as one of the most challenging aspects of microbiology. This can be mainly attributed to the effects of varying culture conditions.

To facilitate the identification of these microorganisms, Bruker has developed a cultivation method supporting creation of reference spectra for the MBT HT Filamentous Fungi Module, and a standard workflow for identification.

The MBT HT Filamentous Fungi Module combines a comprehensive library of reference spectra with an optimized software module, leading to a high identification success rate.

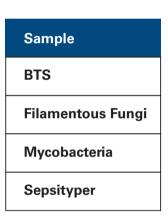
A standardized reference library

In order to reduce the effects of culture conditions on the mass spectrum and to aid in the formation of a uniform mycelium, Bruker developed a liquid based cultivation method, standardizing the physiological status. This method has been used to create reproducible reference spectra for the MBT Filamentous Fungi Library, which can be used for identification of front mycelium harvested directly from regular agar.

To create the reference library, tubes with liquid medium have been inoculated with the fungi and placed on a rotator to incubate overnight or until enough biological material was observed.

This standardized Liquid Cultivation method prevents the germination process and the formation of spores, which, in turn, permits the creation of reproducible library entries.

As a consequence, identification of filamentous fungi by isolation of their mycelium enables fast and reliable species identification.

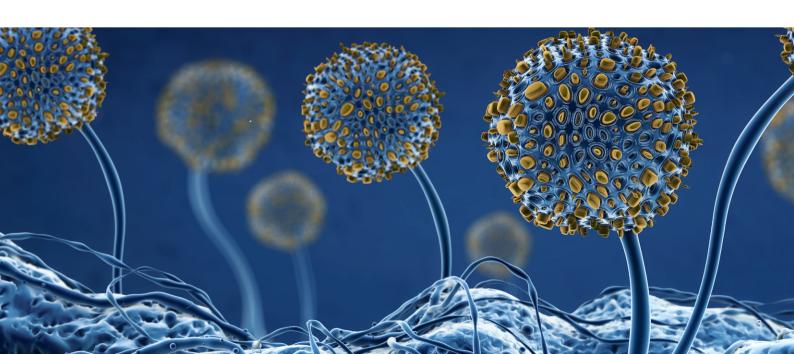

MBT Filamentous Fungi Library

Version 2022 covering 222 species/species groups

More than a library

The MBT HT Filamentous Fungi Module combines a comprehensive library with an optimized software module, including adapted thresholds for identification of filamentous fungi.

The dedicated software module triggers mass spectral acquisition using different weighting parameters than those applied for most bacteria. The optimized data acquisition and analysis contribute to a high identification success rate.

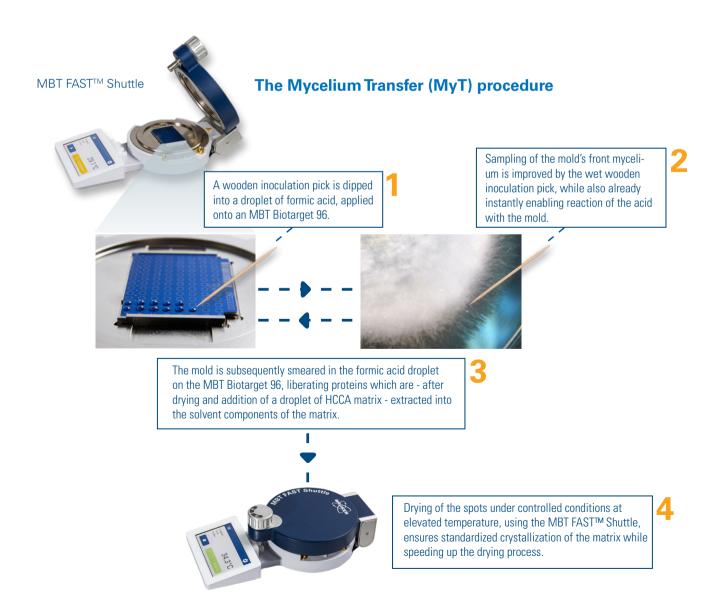


Easy selection of the sample type while

setting up the run for optimized data

acquisition and analysis

Sample type

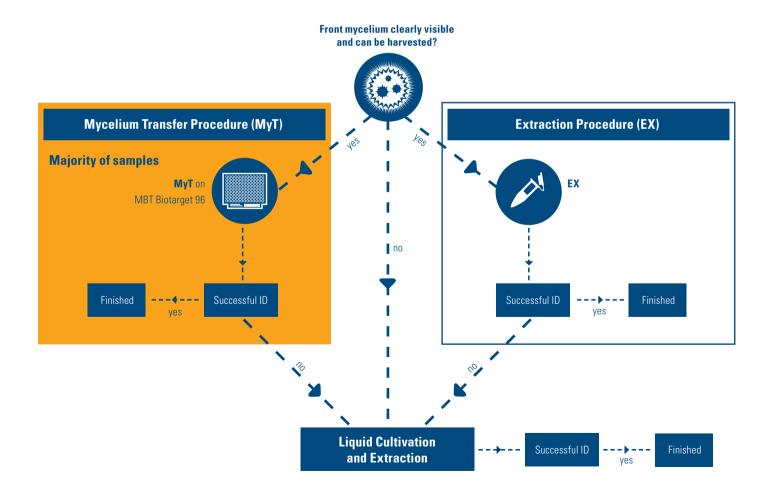

Your easy daily workflow

The result of constant developments is a tremendously improved sample preparation method, called the Mycelium Transfer (MyT) procedure. It enables the microbiologist to achieve considerably higher identification success rates for these challenging filamentous fungi samples. The formerly known "three step workflow" can now successfully be replaced for most of the filamentous fungi samples by the new MyT procedure, which is in fact a modified extended Direct Transfer (eDT).

The easy MyT method can be used in most of the cases, when front mycelium is clearly visible and can be harvested easily, like in the example shown below. Hence, sample preparation is most often very similar to the straightforward and fast eDT method that is typically used for yeast.

Best results are obtained when using the disposable MBT Biotarget 96 for sample preparation. The slightly rough surface of the MBT Biotarget 96 ensures an intense homogenization and effective cell disruption of the fungal material on the MALDI target. The MBT FASTTM Shuttle can conveniently be used to dry the spots.

In general, good results can be obtained for the majority of samples using the new MyT method, with sample preparation on an MBT Biotarget 96.


Mighty analysis directly from agar

The new MyT method requires a droplet of formic acid to be spotted first on an MBT Biotarget 96, after which a wooden inoculation pick is dipped into that droplet. This action improves the subsequent sampling of the mold's front mycelium with the wet wooden inoculation pick, while also already instantly enabling reaction of the acid with the mold. When subsequently smearing the mold into the formic acid droplet on the MBT Biotarget 96, mechanical disruption happens due to the slightly rough surface of the target, favorable for liberating more proteins. After drying and addition of a droplet of matrix, these proteins are extracted into the solvent components of the matrix. Surprisingly, this extremely simple and fast MyT method has resulted in an even better identification success rate than the Extraction (EX) method, which however still can be used if users prefer that method.

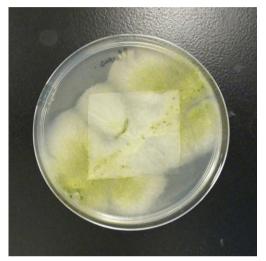
The slightly more time-consuming Liquid Cultivation is only used when the MyT or EX methods do not result in a reliable identification

or when easy harvesting of mold material is impossible, for example due to a strong adherence to the agar. As soon as turbidity is observed in the liquid culture, which is typically after overnight cultivation, the dedicated MBT Filamentous Fungi Extraction Procedure for liquid medium samples can be applied. Only very few samples need to be prepared following this procedure, and it is of course the method of choice for creation of home-made reference library entries.

For all sample preparation procedures, it is highly recommended to dry the spots under controlled conditions at an elevated temperature, using the MBT FAST™ Shuttle.

MBT Filamentous Fungi Library

The MBT Filamentous Fungi Library Version 2022 covers 222 species / species groups. The library strain composition consists of culture collection strains and strains isolated from clinical and environmental specimens, provided by cooperation partners.


Absidia caerulea	Arthrographis kalrae	Aureobasidium melanogenum_pullulans
Absidia glauca	Aspergillus brasiliensis	Beauveria bassiana
Acaulium acremonium	Aspergillus calidoustus	Boeremia exigua
Acremonium cereale	Aspergillus clavatus	Botrytis aclada
Acremonium chrysogenum	Aspergillus flavus_oryzae_group	Botrytis cinerea
Acremonium curvulum	Aspergillus fumigatus	Byssochlamys fulva
Acremonium polychromum	Aspergillus iizukae	Byssochlamys nivea
	, 0	· · · · · · · · · · · · · · · · · · ·
Acremonium sclerotigenum	Aspergillus japonicus	Byssochlamys spectabilis
Actinomucor elegans	Aspergillus lentulus	Chaetomium globosum
Alternaria alternata	Aspergillus montevidensis	Chaetomium sp
Alternaria infectoria	Aspergillus nidulans	Chrysosporium keratinophilum
Alternaria rosae	Aspergillus niger	Chrysosporium shanxiense
Apophysomyces elegans	Aspergillus ochraceus	Cladosporium cladosporioides
Arthrinium arundinis	Aspergillus parasiticus	Cladosporium halotolerans
Arthrinium phaeospermum	Aspergillus penicillioides	Cladosporium herbarum
Arthroderma borellii	Aspergillus pseudoglaucus	Cladosporium macrocarpum
Arthroderma ciferrii	Aspergillus pulvinus	Cladosporium sphaerospermum
Arthroderma cuniculi	Aspergillus ruber	Clonostachys rosea
Arthroderma curreyi	Aspergillus sclerotiorum	Colletotrichum gloeosporioides
Arthroderma eboreum	Aspergillus sp[4]	Coniochaeta hoffmannii
Arthroderma flavescens	Aspergillus sydowii	Coniochaeta luteorubra
Arthroderma gertleri	Aspergillus tamarii	Coniochaeta mutabilis
Arthroderma gloriae	Aspergillus terreus	Cordyceps farinosa
Arthroderma insingulare	Aspergillus tritici	Cunninghamella bertholletiae
Arthroderma lenticulare	Aspergillus unguis	Cunninghamella elegans
Arthroderma multifidum	Aspergillus ustus	Curvularia sp[6]
Arthroderma thuringiensis	Aspergillus versicolor	Dichotomopilus dolichotrichus
Arthroderma uncinatum	Aspergillus westerdijkiae	Dichotomopilus funicola

Didymella glomerata	Lichtheimia corymbifera	Nannizzia duboisii
Didymella pomorum	Lichtheimia ramosa	Nannizzia fulva
Epicoccum nigrum	Lomentospora prolificans	Nannizzia gypsea
Epidermophyton floccosum	Metarhizium marquandii	Nannizzia incurvata
Exophiala dermatitidis	Microascus gracilis	Nannizzia persicolor
Fusarium avenaceum	Microascus melanosporus	Nannizzia praecox
Fusarium cerealis_culmorum_group	Microsporum audouinii_canis	Neoscytalidium dimidiatum_hyalinum
Fusarium chlamydosporum	Monascus ruber	Neoscytalidium sp
Fusarium delphinoides	Monilinia laxa	Ovatospora brasiliensis
Fusarium dimerum	Mortierella acrotona	<i>Ovatospora</i> sp
Fusarium equiseti	Mortierella angusta	Paecilomyces lagunculariae
Fusarium graminearum	Mortierella gamsii	Paraphyton cookei
Fusarium incarnatum	<i>Mortierella</i> sp	Paraphyton cookiellum
Fusarium oxysporum	Mucor amphibiorum	Penicillium aurantiogriseum
Fusarium petroliphilum	Mucor circinelloides	Penicillium brevicompactum
Fusarium poae	Mucor genevensis	Penicillium camemberti
Fusarium proliferatum	Mucor hiemalis	Penicillium chrysogenum
Fusarium solani	Mucor indicus	Penicillium citreonigrum
Fusarium sp	Mucor lanceolatus	Penicillium citrinum
Fusarium sporotrichioides	Mucor moelleri	Penicillium commune
Fusarium verticillioides	Mucor racemosus	Penicillium corylophilum
Fusicolla aquaeductuum	<i>Mucor</i> sp	Penicillium digitatum
<i>Lasiodiplodia</i> sp	Nannizzia aenigmatica	Penicillium expansum

Penicillium fellutanum	Purpureocillium lilacinum	Talaromyces funiculosus
Penicillium glabrum	Rasamsonia argillacea	Talaromyces islandicus
Penicillium italicum	Rhizomucor miehei	Talaromyces macrosporus
Penicillium menonorum	Rhizomucor pusillus	Talaromyces pseudostromaticus
Penicillium nalgiovense	Rhizopus delemar	Talaromyces ruber
Penicillium namyslowskii	Rhizopus microsporus	Talaromyces rugulosus
Penicillium olsonii	Rhizopus oryzae	Talaromyces sp
Penicillium onobense	Rhizopus stolonifer	Talaromyces trachyspermus
Penicillium oxalicum	Sarocladium kiliense	Talaromyces wortmannii
Penicillium pimiteouiense	Sarocladium strictum	Thanatephorus cucumeris
Penicillium roqueforti	Scedosporium sp[5]	Trichoderma fertile
Penicillium singorense	Schizophyllum commune	Trichoderma hamatum
Penicillium sp	Scopulariopsis brevicaulis	Trichoderma harzianum
Penicillium sp	Scytalidium sp	Trichoderma longibrachiatum
Penicillium sp[2]	Sporothrix schenckii	Trichoderma orientale
Penicillium turbatum	Stachybotrys chartarum	Trichoderma polysporum
Penicillium verrucosum	Stachybotrys chlorohalonata	Trichoderma reesei
Petriella setifera	Stachybotrys echinata	Trichophyton mentagrophytes_group
Phaeoacremonium cinereum	Syncephalastrum monosporum	Trichophyton rubrum_group
Phialemoniopsis curvata	Syncephalastrum racemosum	Trichophyton terrestre
Phoma herbarum	Talaromyces bacillisporus	Trichothecium roseum
Plectosphaerella cucumerina	Talaromyces diversus	Trichurus spiralis
Pseudogymnoascus pannorum	Talaromyces duclauxii	Zopfiella karachiensis

Boost your results by Id-Fungi Plates™

Id-Fungi Plates[™] are an innovative solution allowing the selective growth of molds, yeasts and dermatophytes for MALDI-TOF analysis, on a specific culture medium with an optimized composition and pH. Its unique membrane limits the contact of the sample with the agar and makes sampling much easier, resulting in generation of better-quality MALDI-TOF spectra and an increased success rate of identified samples.

Aspergillus flavus grown on an Id-Fungi Plate™

ORDER INFORMATION

Part No. 1889531

MBT HT Filamentous Fungi Module

Consists of the MBT Filamentous Fungi Library and license for the MBT HT Filamentous Fungi software module. Prerequisite for the use of the module is the MBT Compass HT RUO software.

Part No. 1840375 MBT Biotarget 96

Part No. 1872847 MBT FAST Shuttle

For Research Use Only. Not for use in clinical diagnostic procedures. Please contact your local representative for availability in your country.

 $\label{eq:malpha} \mathsf{MALDI}\ \mathsf{Biotyper}^{\texttt{o}}\ \mathsf{is}\ \mathsf{a}\ \mathsf{registered}\ \mathsf{trademark}\ \mathsf{of}\ \mathsf{the}\ \mathsf{Bruker}\ \mathsf{group}\ \mathsf{of}\ \mathsf{companies}.$

Id-Fungi Plates™ are manufactured by Conidia SAS – France.

Bruker Daltonics GmbH & Co. KG

Bremen · Germany Phone +49 (0) 421-2205-0

info.md@bruker.com

Bruker Scientific LLC

Billerica, MA · USA Phone +1 (978) 663-3660 **Online information** bruker.com/microbiology

