
Improved sensitivity and higher lipid annotation ID capabilities using a new vacuum insulated heated ESI source

Matthias Szesny, Lucy Woods, Sven Meyer, Ansgar Korf, Nikolas Kessler, Aiko Barsch Bruker Daltonics GmbH & CoKG,

28359 Bremen, Germany

Introduction

Abundance of lipids in typical samples such as plasma extracts can vary drastically. Therefore, analytical equipment with a high sensitivity and dynamic range is required in lipidomics research. Here we present results of a new vacuum insulated heated ion source (VIP-HESI) coupled with a timsTOF Pro ion mobility mass spectrometer including trapped ion mobility separation and CCS values.

As part of the evaluation process dilution series of a lipid standard with and without matrix were acquired to asses the limit of detection (LOD) and the dynamic range. In a second experiment the lipid ID annotation capability was examined using a commercially available serum standard.

All experiments were compared to data which was acquired with the standard Bruker Apollo II source.

Fig. 1: Technical drawing of the VIP-HESI source

Methods

- LC: Elute UHPLC, YMC-Triart C18, 100 x 2.1 mm ID, S-1.9 um.
- 5-minute gradient program
- Injection volume: 5 μL
- MS: timsTOF Pro (Bruker)
- Acquisition: PASEF neg mode
- Software: MetaboScape 2021b
 (Bruker) for the untargeted ID part via
 a rule-based lipid annotation. TASQ
 2021b (Bruker) for the quantitative
 analysis.
- Chemicals: Reference serum SRM1950 (Sigma); deuterated SPLASH mix lipid standard (Avanti Lipids)

Improved levels of detection (LOD)

	Without matrix			With matrix		
	HESI	ESI	LOD	HESI	ESI	LOD
	neg	neg	ESI/	neg	neg	ESI/
	[ppt]	[ppt]	HESI	[ppt]	[ppt]	HESI
Lyso PC 18:1(d7)	238	793.3	3.3	238	2380	10
Lyso PE 18:1(d7)	163.3	1633.3	10.0	490	1633.3	3.3
PA 15:0-18:1(d7)	690	2300	3.3	6900	23000	3.3
PC 15:0-18:1(d7)	502	5020	10	1506	1506	1
PE 15:0-18:1(d7)	176.7	1766.7	10	1766.7	5300	3.0
PG 15:0-18:1(d7)	267	8900	33.3	890	8900	10
PI 15:0-18:1(d7)	85	8500	100	28333*	8500*	0.3*
PS 15:0-18:1(d7)	130	3900	30	1300	13000	10
SM d18:1-18:1(d9)	296	2960	10	986.7	2960	3.0
Average gain			23.3			4.89

LOD's were visually determined by S/N of 3.

The next lowest concentration was checked to exclude artefacts.

Legend LOD ratio ESI/HESI <1 1-10 >10

*Interference from plasma matrix reduces the LOD

Fig. 2: LOD comparison between the VIP-HESI and the standard Bruker Apollo II source

For the evaluation a dilutions series of SPLASH mix was prepared without matrix in methanol and with matrix in SRM1950 (30 µL SRM1950 plasma extract equivalent in 1 mL Methanol)shows the results for negative.

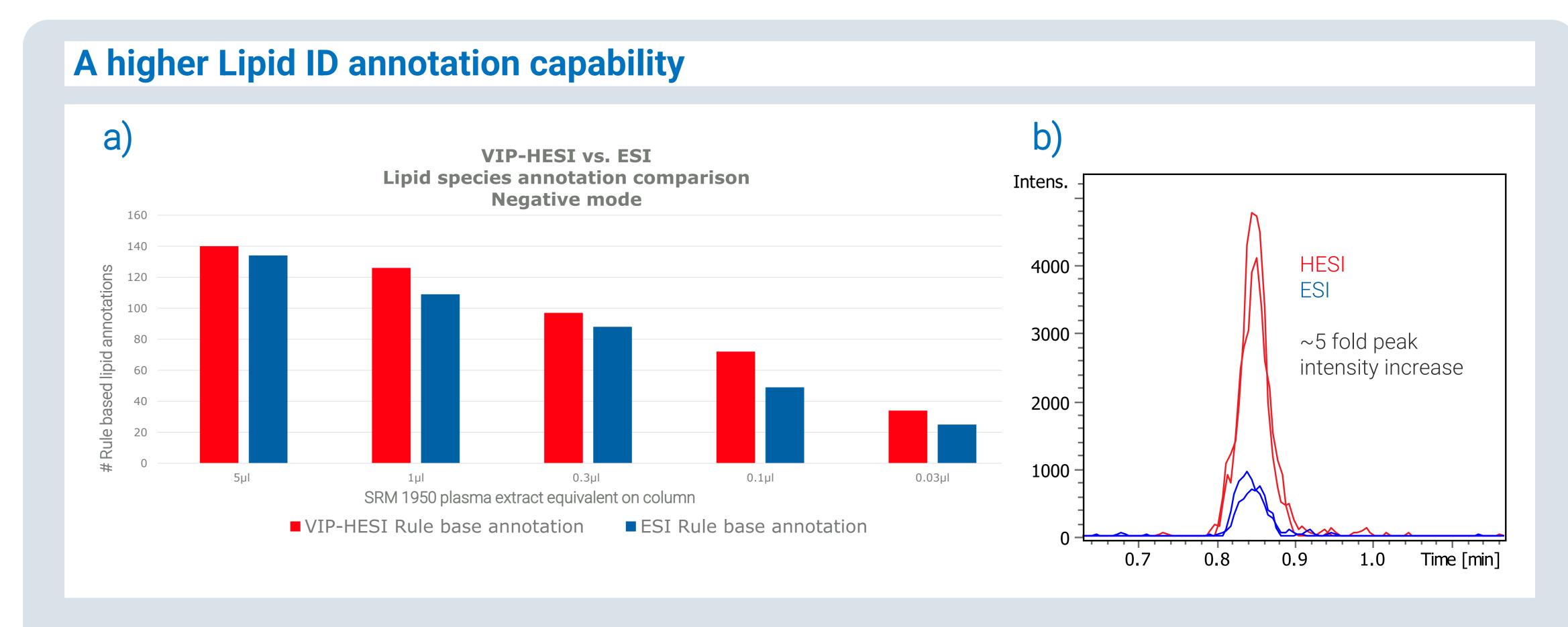


Fig. 3: Lipid ID annotation capability on different dilution levels of the reference serum SRM1950

The VIP-HESI reveals on all concentration levels a higher number of rule-based lipid annotations like shown in figure **a**). The lower the concentration level the higher this effect can be observed. The higher performance can be explained with the better ionization capability of the VIP-HESI like shown in figure **b**) in which an unprecedented lipid shows an intensity increased by a factor of five.

A better dynamic range VIP-HESI y = 0.435 + 0.9359*x R² = 0.9947 ESI y = -0.416 + 0.9757*x R² = 0.9974 LOQ 4900 ppt log Quantity expected [ppt]

Fig. 4: Dilution series of the Lyso PE 18:1(d7) with logarithmic scaling

The improved LODs result also in a higher dynamic range. For the shown lipid the limit of quantification (LOQ) is one order of magnitude lower by maintaining the linearity of the calibration function.

Conclusion

The novel VIP-HESI source in combination with mobility offset mass aligned data acquisition offers a deeper and broader analysis by CCS-enabled lipidomics workflows based on:

- Better LODs and an improved linear dynamic range in positive and particularly in negative mode.
- A higher number of lipid ID annotations for untargeted workflows.

Technology