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Recent introduction of parallel accumulation 
serial fragmentation (PASEF) on a trapped 
ion mobility quadrupole time-of-flight mass 
spectrometer (timsTOF Pro) provides 
unique possibilities for comprehensive 
glycopeptide profiling in complex samples 
such as blood plasma. Poor ionization 
efficiency during electrospray ionization was 
solved previously by providing acetonitrile
enriched nitrogen gas into the CaptiveSpray
source via the nanoBooster. Here, we show 
first results using nanoBooster dopants for 
glycopeptide analysis on the timsTOF pro 
instrument.

Conclusions 

• nanoBooster dopants are compatible 
with TIMS operation

• Acetonitrile and primary alcohols 
enhance glycopeptide ionization 
efficiency

• Acetonitrile dopant supercharges 
glycopeptide precursor ions and 
increases the number of charge 
states per precursor ion

• Primary alcohols subcharge
glycopeptide precursor ions and 
reduce charge state heterogeneity

• PASEF enables comprehensive 
structural elucidation of glycopeptides

timsTOF PASEF

Methods

Fig. 1: Effects of nanoBooster solvents compared to air for peptides and 
glycopeptides from human blood plasma. (A): m/z versus 1/K0 precursor maps for 
peptides and  glycopeptides with charge z=2+ up to z=6+ using air or ethanol and 
acetonitrile dopants. (B): Relative distributions of m/z, z, and 1/K0 values for all precursor 
ions for each nanoBooster condition. (C): Representative extracted ion currents (EIC) for 
each charge state of six randomly selected glycopeptide precursor ions. The fold change 
increase  in signal intensity relative to air was calculated using the dominant charge state of 
each condition. Colors of the EIC traces correspond with charge states : blue: z=2+, red: 
z=3+, black: z=4+, green: z=5+

Results Summary

Use of acetonitrile and primary alcohols as 
nanoBooster dopant are compatible with 
TIMS and PASEF operation on the timsTOF 
Pro instrument. Ionization efficiency is 
significantly enhanced which enabled analysis 
of glycopeptides that were barely detectable 
under normal ESI source conditions (Fig1). 
PASEF using normal and elevated collision 
induced dissociation energies can be used to 
identify both the glycan- and peptide-
moieties by GlycoQuest and MASCOT 
database searches as shown for selected 
IgG1 glycopeptides in figure 2.
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Blood plasma from healthy individuals was 
subjected to tryptic digestion and glycopeptides 
were enriched using Sepharose. Both the 
tryptic plasma digest and enriched glycopeptide 
fractions were measured  by LC-IMS-MS/MS  
(Bruker Daltonics nanoElute and timsTOF Pro) 
using filtered air and dopant enriched nitrogen 
source gas using acetonitrile and ethanol as 
nanoBooster solvents. Data analysis was 
performed in DataAnalysis 5.0, ProteinScape
4.1, and in-house developed Perl scripts.
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Fig. 2: IgG glycopeptide identifications 
example.(A): Combined GlycoQuest and 
MASCOT search result of G0F with glycan and 
peptide moiety fragmentation. 
(B): Selection of the most abundant identified 
IgG1 glycopeptides is highlighted in the m/z
versus 1/K0 precursor map.
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