

スペクトル・フィッティングでNMRスペクトル 解析の幅を広げよう

NMR-Webinar 2016.5.25-26

Webinarの趣旨

背景

NMR測定は興味の対象となるサンプル内に含まれる分子の構造や運動状態を調べ、サンプルの物性との関連を見い出すことに大きな威力 を発揮します。単純にスペクトルを比較しサンプルの違いや変化を調べ ることにも十分意義はありますが、スペクトル解析を行うことでより多く の情報を得ることができます。

目的の情報を得るための測定方法の原理の説明から、得られたスペ クトルのフィッティングによる解析方法、その解釈についてお話しいたし ます。

- 1. スペクトル解析の有用性
- 2. スペクトル解析ソフトウェア
- 3. Solids Lineshape Analysis (Solaプログラム)について
- 4. Gauss/Lorentzスペクトルの解析
- 5. 四極子核スペクトルの解析
- 6. CSA (Chemical Shift Anisotropy)の解析

1. スペクトル解析の有用性

2. スペクトル解析ソフトウェア

スペクトル解析ソフトウェアの例

1. DMFIT: Massiotらが開発

(http://nmr.cemhti.cnrs-orleans.fr/dmfit/)

2. SIMPSON: Nielsenらが開発

(http://nmr.au.dk/software/simpson/)

3. Solids Lineshape analysis (Solaプログラム): TopSpinに搭載

3. Solids Lineshape Analysis (solaプログラム)について

TopSpinに標準搭載された固体NMRスペクトルの解析用プログラム

スペクトル & フィッティング Model

- 1. Gauss/Lorentz: Gauss/Lorentz
- 2. CSA (Chemical Shift Anisotropy): CSA
- 3. All Quadrupolar Transition: Quad all
- 4. Quadrupolar central transition: Quad cetral
- 5. CSAŁQuadrupolar interaction: Quad & CSA

3. Quad all

4. Quad central

5. Quad & CSA

4. Gauss/Lorentzスペクトル解析

Gauss/Lorentzスペクトル解析の例

ゼオライトのFrameworkを29Si-スペクトル解析から求める

Gauss/Lorentzスペクトル解析の例

ゼオライトのFrameworkを29Si-スペクトル解析から求める

Convolution(畳み込み積分)の式

$$I(v) = \int_{-\infty}^{\infty} G(v') L(v - v') dv'$$

セルロースの¹³C-CPMASスペクトル

Solids Lineshape Analysisの立ち上げ

① スペクトルの表示

(2) Analyse \rightarrow Line Shapes \rightarrow Fit Solids NMR Models (sola)

Solids Lineshape Analysisのウィンドウ

Side bands 3 User DOR bands 0 Immegral 2335 User Dir C: FIT CONDITION FLAGS All false DOR false Sync false SPECTRAL PARAMETERS MASR MASR 12000.0 DORR 0.0 Add De
--

Spectrum

Site

	
1 cellulose_decomv 14 1 C:¥mmr_data	
║╫╗╗╗╠╟╲╏┙┖┽ <mark>╓╻</mark> ╔╡┙╢	
Main Spectrum Site Dip.Interaction Log 13C-CPMAS Site1 1 Iteration Status cellulose Cycle Best overlap(%) 56.163 Model CSA Options Gauss/Lorentz Haeberlen IUPAC Herzfeld-Ber Parameters Image: State S	②
♥ δ(iso) 104.684 ppm ● ♥ LB 200 Hz ● ♥ xG/(1-x)L 0.5 0 1. ● Integral 2569276522.84 ● ●	③ 1 ボタンを左クリックしたままマウス を上下に動かしSite1の強度を調整し ます
Add Delete Step Calib 120 100 80 60 40 [ppm]	④ LB ボタンを左クリックしたままマウス を左右に動かしSite1の線幅を調整し ます。

Curve fitting

fitlog.txt

ile	e Edit Search	
9	Angle 54.7	
20	AngleInt 90.0	
21	Side bands 3	1.1.
22	DOR bands 0 フィッティングの情報が記	載
23	F1P (Fitting) = 130 F2P (Fitting) = 40	+ ~
24		
25	SITES 1 2 3 4 5 6 7	
26	Iy 8791883.3* 5612293.3* 2779805.8* 15333451.4* 14321051.4* 6956219.5* 3155779.4*	
27	delta(iso) 104.8 88.254 83.2 74.774 72.0 65.146 62.258	
28	LB 250* 200* 500* 250* 200* 200*	
29	xG/(1-x)L 0.5* 0.5* 0.5* 0.5* 0.5* 0.5* 0.5*	
30	Integral 3178376305.13 1624111942.71 2003141830.54 5542430614.17 4143864491.22 2012679000.5	
31		
32		
33	SIMPLEX Optimization Started	
34	Starting Overlap(%) 92.77680264318727	
35	Overlap(%) 94.05024540706647	
36	ITERATION RESULT	
37	Iteration terminated at 4/11/16 3:10:31 PM	
38		
39	SITES 1 2 3 4 5 6 7	
40	Iy 9230147.4* 5151047.3* 2529828.7* 13628047.1* 13880948.7* 6336649.3* 3785213.5*	
41	delta(iso) 104.8 88.254 83.2 74.774 72.0 65.146 62.258	
42	LB 275.4769* 206.9746* 516.0212* 291.0467* 225.5757* 148.3934* 259.1682*	
43	xG/(1-x)L 0.4852* 0.4702* 0.4674* 0.4615* 0.5046* 0.5266* 0.5255*	
44	Integral 3579874695.06 1544100099.65 1880311291.97 5913119507.13 4765154472.91 1476123115.0	
45		
46		
47	Best Overlap(%) 94.05024540706647	
48	v	
	۲ (ا	

Fitting curveの保存

Fitting curveの保存

1 cellulose_decomv	14 1 C:¥nmr_d	ata		- • •
<u> </u> (a	L¥♥● L	🕻 🕂 LB L/G 🧅	③ 番号を入力しOKボ	
Main Spectrum	Site Dip.Interac	tion Log		rel]
Spc1				
Model	_			-
Gauss/Lorentz -		Sync	Save Spectrum	-
Experimental Spectrum			Please specify destination	— co
Name cellulose_c	lecomv		PROCNO 999	-
ExpNo 14	ProcNo 1		OK Cancel	-
User Dir C:				ں –
Parameters	10000.0	u . .		
	0.0			-
Angle	54.7	degree		- 4
AngleInt	90.0	degree		Ē
Side bands	3	0 - 30		-
DOR bands	0	0 - 10		- 0
				-
				•••••••••••••••••••••••••••••••••••••••
Edit Ranges	Save As	Save CSV Ste		[ppm]

ピーク強度の規格化

ピーク強度の規格化

Fitting ピークの作成

ピーク分離した結果の表示

定量解析を行う時の注意点

- 積分強度をとるときにはSpinning side bandの面積も含めなければなりません。
- MASでSSBが十分取り除けないCSAが大きい¹⁹Fなどは要注意

5. 四極子核スペクトルの解析

C_o:核四極子結合定数

η: 非対称定数

四極子核のスペクトルの特徴

四極子核のスペクトル解析方法はスペクトルに応じて3つの選択肢があります。

1. CentralとSatellite transitionを全てフィッティング → Quad All

²Hスペクトルは線幅が比較的狭いため測定・解析が可能

※他の核種では十分に広い帯域を励起したスペクトルを測定する実験が困難

2. Central transitionのみをフィッティング \rightarrow Quad Central

・MAS条件下で、central transition (1/2 → -1/2) に着目

3. 1Dスペクトルの線形が複雑な時 → MQMAS + Quad Central or mqmasプログラム TopSpin3以降

5-1. Quad allによるスペクトル解析

Quadrupole Echoによる測定

■ ブロードな四極子核のスペクトルを正確に測定するのは難しい

D-PMMAの²H-Quadrupole Echoスペクトル

1 2H_PMMA 100 1 C:¥nmr_data			- • •
╧╝╗╗┡╞┝╗╗			
Main Spectrum Site Dip.Intera	フィッティンクの開始		Ē
Site1 Site2			
	ha		-
Cycle ヒークサイトの追			
OUAD all Haeberler UPAC Herzfeld-			- o
Parameters			-
✓ ly 8212037 ●			-
🔽 δ(iso) 9.941 ppm Ο			- ω
CQ(Quad) 50 kHz ○ vQ(Quad) 75 kHz ○			
✓ ΠΟ Πα Πα ✓ η(Quad) 0.01 0 1. ○			-
			- 4
Integral 707051309.54			
			-
		/	- 0
	M		
<)			••••••••••••••••••••••••••••••••••••••
Add Delete Step Calib	4000 2000	0 -2000	[ppm]

PMMAの構造とC_Qとηの関係

5-2. Quad centralによるスペクトル解析

Satellite transitionはスペクトル幅が広く観測が困難であり、もっぱら Central transitionを測定することが多い。

Central TransitionへのHahn Echoの効果

Central Transitionに対するMASの効果

Central TransitionへのMASとHahn Echo の効果

2 87Rb_4DVT 101 1 C:¥nmr_data			
▓ख़ॖॖॳॾॾ	💐 учу, LB GB D 🖯 🔶 🍐 🔛 🗸	L	
Main Spectrum Site Dip.Interaction Log			
Spc1			
Model			
QUAD central - QUAD centra	al の選択		2 –
Experimental Spectrum			-
Name 87Rb_4DVT			
ExpNo 101 ProcNo 1			
User Dir C:			- 2
Parameters			-
MASR 5000.0 Hz MAS	割波数の入力		-
DORR 0.0 Hz			-
Angle 54.7 degree			-
AngleInt 90.0 degree			
Side bands 3 0 - 30			_
DOR bands 0 0 - 10		ILA	
			X -
Edit Ranges の入力			- 0
Edit Ranges Save As Save CSV Step	20000 10000	0 - 10)000 - 20000 [Hz]

RbSO₄の構造とC_Qとηの関係

MASのフィッティングデータをもとに Staticスペクトルのフィッティング

5-3. MQMASによるスペクトル解析

MQMASによるスペクトル解析 ~スペクトル線形が複雑な場合~

RbNO3の87Rb MASスペクトル

二次の核四極子相互作用 (central transitionの広幅化)

$$\omega_{-m\leftrightarrow+m}^{2} = \frac{\omega_{Q}^{2}}{\omega_{0}} A_{0}(I,p) B_{0}^{Q}(\eta_{Q}) + \frac{\omega_{Q}^{2}}{\omega_{0}} A_{2}(I,p) B_{2}^{Q}(\eta_{Q},\alpha_{Q},\beta_{Q}) \underline{P_{2}(\cos\theta)} + \frac{\omega_{Q}^{2}}{\omega_{0}} A_{4}(I,p) B_{4}^{Q}(\eta_{Q},\alpha_{Q},\beta_{Q}) \underline{P_{4}(\cos\theta)}$$

$$P_{2}(\cos\theta) = \frac{1}{2} \left(3\cos^{2}\theta - 1\right) \qquad P_{4}(\cos\theta) = \frac{1}{8} \left(35\cos^{4}\theta - 30\cos^{2}\theta + 3\right)$$

MQMASスペクトル測定

$$\omega_{-m\leftrightarrow+m}^{2} = \frac{\omega_{Q}^{2}}{\omega_{0}} A_{0}(I, p) B_{0}^{Q}(\eta_{Q}) + \frac{\omega_{Q}^{2}}{\omega_{0}} A_{2}(I, p) B_{2}^{Q}(\eta_{Q}, \alpha_{Q}, \beta_{Q}) P_{2}(\cos\theta) + \frac{\omega_{Q}^{2}}{\omega_{0}} A_{4}(I, p) B_{4}^{Q}(\eta_{Q}, \alpha_{Q}, \beta_{Q}) P_{4}(\cos\theta)$$

MAS下で、位相廻しによるコヒーレンス 経路(**p**)の選択を行い、2次の核四極子 相互作用を平均化する。

MQMAS測定スペクトルの特徴

Analyse \rightarrow Line Shapes \rightarrow Fit Solids 2D MQMAS Models (mqmas)

2D スペクトル上でのピークSiteの設定

Main \rightarrow Spectrum \rightarrow Site

Fitting結果の確認

Chemical shift値の読み取り

RbNO₃の⁸⁷Rb-MASスペクトル $C_Q = 1.75MHz$ 1 nmr4_140605_prep 9 1 C:¥nmr_data - • × Spectrum ProcPars AcquPars Title PulseProg Peaks Integrals Sample Structure Plot Fid $\eta = 0.54$ Ē 5 この中には3つ の状態のRbが 存在していた 5 $C_Q = 1.72MHz$ η = 0.19 - 10 - 20 - 30 - 40 - 50 - 60 [ppm] and the second $C_Q = 1.99MHz$ $\eta = 0.89$

6. CSA (Chemical Shift Anisotropy, 化学シフト異方性)の解析

ペプチドのコンホメーション解析

powder patternの測定について

Powder Patternの測定でベースラインがまっすぐにならない場合、 echo pulseを用いると改善されます。

¹³C CP-Static Spectra of Gly

(PULPROG: cp, DIGMOD: digital, DE:20us)

(PULPROG: cphahn, DIGMOD: digital)

CSAのパラメーターは大きく3種類の定義があります。

Sola (SOlid Lineshape Analysis)内でHaeberlenを選択した際のパラメーター

CSAの基礎知識2

Haeberlen-Mehring-Spiess法

Mehring, M.: "High Resolution NMR in solids", Springer, Berlin, (1983).

$$\delta_{CSA} > 0$$
のとき
 $\delta_{11} = \delta_{iso} + \delta$
 $\delta_{22} = \delta_{iso} + \delta (1-\eta)/2$
 $\delta_{33} = \delta_{iso} - \delta (1+\eta)/2$
 $\delta_{33} = \delta_{iso} - \delta (1+\eta)/2$
 $\delta_{33} = \delta_{iso} - \delta (1+\eta)/2$

$$\delta_{CSA} < 0$$
のとき
 $\delta_{33} = \delta_{iso} + \delta$
 $\delta_{22} = \delta_{iso} + \delta (1-\eta)/2$
 $\delta_{11} = \delta_{iso} - \delta (1+\eta)/2$
 $\delta_{11} = \delta_{iso} - \delta (1+\eta)/2$
 $\delta_{11} = \delta_{iso} - \delta (1+\eta)/2$

CSAの基礎知識3

IUPAC法

Mason, J. Solid State Nucl. Magn. Reson. 2, 285(1993).

CSAの基礎知識 4 Herzfeld-Berger法

Herzfeld, J.; Berger, A. E. J. Chem. Phys. 73, 6021 (1980).

$$\begin{split} \delta_{iso} &= (\delta_{11} + \delta_{22} + \delta_{33})/3 & \Rightarrow \delta_{11}, \delta_{22}, \delta_{33} \mathcal{O} \mathbb{P} 均 \delta_{iso} \\ \delta_{11} &\geq \delta_{22} \geq \delta_{33} & \Rightarrow \delta_{11} \mathcal{N} \oplus \mathbb{I} \oplus \oplus \mathbb{I} \oplus \mathbb$$

ピーク・フィッティングの実際1

powder patternのフィッティングによるCSAの算出1 (spectrum)

1. Powder patternスペクトルを表示させ、solaを立ち上げます。

2.	スペクトル・タブをクリック 🔍		
		1	
3.	Modelで"CSA"を選択 🥄 💦 🕺	2	nmr3_131017 108 1 "C:¥Users¥hk¥Documents¥data at BRUKER¥400WB" [
			ᆇᆋᇈ溅⋗҇҇҇҇Ѩӝ҄Ҫ҆҄ҹҏҏҝҩӄӟ
4.	ParametersのMASRに"の"を入力する。		Main Spectrum Site Dip.Interaction Log
			Spc1
			Model
			CSA All DOR Sync
			Experimental Spectrum
			Name nmr3_131017
			ExpNo 108 ProcNo 1
			User Dir C:\Users\hk\Dc
		K	Parameters
			MASR 0.0 Hz 💿
			DORR 0.0 Hz O

ピーク・フィッティングの実際1

powder patternのフィッティングによるCSAの算出2 (site)

ピーク・フィッティングの実際1

powder patternのフィッティングによるCSAの算出3 (Curve fitting)

2 webinar2016 5 1 "C:¥Users¥hk¥Documents¥data at BRUKER¥400WB"						
╧╖╄┺╗╗┱ӝ╞╪┿╪╪┽┍ݠᇋ┏өѻ╡╡╝						
Main Spectrum Site Dip.Interaction Log Site1 Iteration Status Cycle 200 Best overlap(*)ボタンを押す Model CSA Options CSA ● Haeberlen ● IUPAC が開始します。	■ 13C-CPhahn Static, swftppm Sample: Gly 4mm WVT probe ► fitting					
Parameters Iv 66632.7 δ(iso) 176.287 δ(CSA) -69.92 η(CSA) 0.91 Image: LB 89.5571 Hz	8					
GB 0 0 Integral 145400196.28 0 数値を固定したときにはチェックを外します						
Add Delete Save CSV Step Calib	300 250 200 150 [ppm]					

Main Spectrum Site Dip Interaction Log

Mai	n Spec	trum Si	te Dip.	Interactio	on	Log	
Site	:1						
Iteration Status							
Cycle 200		00	Best overlap(%) 70.2				
Mo	delininC	SA Optic	ons				
CSA	4 💿	Haeber	eberlen 🛇 IUPAC 🔘 Herzfeld-Berger				
Par	ameters	;					
	✓ Iy		86.6			\bigcirc	
	🔽 δ(iso)		285	ppm	ı	\bigcirc	
✓	🔽 δ(CSA)		92	ppm	ı	\bigcirc	
✓	🔽 η(CSA)			0	1.	\bigcirc	
	LB	90		Hz		۲	
	GB	0				\bigcirc	
Integral		145	145395065				

Main Spectrum one Dip.interaction Log							
Site1							
lter	Iteration Status						
с	ycle 200	Best overlap(%) 70.2					
Model CSA Options							
CSA	A ⊚ Ha	eberlen 💿 IUPA	C O	Herzfeld-Berger			
Par	ameters						
Fai	ameters		1				
V	ly	66586.6		\odot			
V	δ(iso)	176.285	ppm	\bigcirc			
δ(11)		243.07	ppm				
	δ(22)	179.42	ppm				
δ(33)		106.37	ppm				
v	LB	90	Hz	\odot			
V	GB	0		\odot			
Integral		145395065					

wain	Spectrui	Dip.inte	action	i Lug	
Site1					
Iteration Status					
Cycl	e 200	Best overl	ap(%)	70.2	
Model CSA Options					
CSA 🔘 H		eberlen 🔘 IUP/	4(;)	Herzfeld-Berger	
Parameters					
🔽 ly		66586.6		0	
🔽 δ(iso)		176.285	ppm	\odot	
Ω		136.7	ppm		
К		0.07	ppm		
V L	в	90	Hz	\odot	
🔽 G	в	0		\odot	
In	itegral	145395065			

Dis Internet

Oito

Main One

ピーク・フィッティングの実際2

ssbのフィッティングによるCSAの算出1 (spectrum)

ssbのフィッティングによるCSAの算出2 (site)

81

ピーク・フィッティングの実際2

ssbのフィッティングによるCSAの算出3 (Curve fitting)

1 webinar2016 1 1 "C:¥Users¥hk¥Documents¥data at BRUKER¥400WB"	
│ <mark>╫</mark> ╕╠ӏӂ <mark>Ӯ</mark> ҇҇҇҇҇҇҅҇Ѭӝӷ҉҄┿҄҇҄҄҄҄ҞҞӷвҫѳ҄Ѻ(μ 🛃 🧼 φ θ
Main Spectrum Site Dip.Interaction Log	13C-CPMAS at 4 kHz, swftppm Sample: Glv
Iteration Status	4mm WVT probe
Cycle 200 Best overlap(%) 63 188 Model CSA Options シボタンを押すと	fitting
CSA Haeberlen O IUPAC が開始します。	
Iv 211685.6 Ο σ Δ(iso) 176.48 ppm σ	
Image: Image	
Integral 7444862.42	
数値を固定したときに	
はチェックを外します	
Add Delete Save CSV Step Calib	250 200 150 [ppm]

まとめ&謝辞

■まとめ

スペクトル・フィッティングから、

- 1. 化学シフト(等方性、異方性)や四極子結合定数、非対称パラメーター、 シグナル強度、半値幅等を見積もることができます。
- 2. 重なりあうシグナルを分離し、上記パラメーターを正確に求めることができます。
- 3. スペクトル間の差を上記パラメーターで定量的に議論することができます。

■謝辞

化学シフト異方性(CSA)を用いた研究例の紹介では

元群馬大学教授 莊司顯先生にご協力いただきました。

www.bruker.com

Would you like to learn more? Contact a customer service representative.