Introduction to Bruker's Products and Solutions

Jason S. Wood, Ph.D. Regional Manager – Bio/Pharma Bruker BioSpin Corp

Bruker Scientific Divisions

	Technology Platforms	Major Applications
Bruker BioSpin — •	 NMR and EPR spectroscopy NMR / TD-NMR EPR MRI Analytical Services 	 Analytical Chemistry Pharmaceuticals Life Science Food Metabolomics
Bruker Daltonics	 Mass Spectrometry LC-TQ Ion Trap UHR-TOF, q-TOF, MRMS MALDI-TOF IMS/TIMS 	 Food, Forensics, Doping control Chemical Analysis Industrial & Applied Analysis Petrochemistry Life Science Research Clinical Research Pharmaceutical Analysis
Bruker AXS — •	 X-ray Analysis X-ray Diffraction X-ray Crystallography X-ray Fluorescence 	 Materials Identification Materials Research Structural Proteomics Nanotechnology
Bruker Optics — •	Vibrational Spectroscopy FT-IR FT-NIR Raman 	 PAT & Quality Control Materials Identification Materials Research Pharmaceuticals / Process

Bruker Scientific Divisions

	Technology Platforms	Major Applications
Bruker BioS	 NMR and EPR spectroscopy NMR / TD-NMR EPR MRI Analytical Services 	 Analytical Chemistry Pharmaceuticals Life Science Food Metabolomics
Bruker Dalto	 Mass Spectrometry LC-TQ Ion Trap UHR-TOF, q-TOF, MRMS MALDI-TOF IMS/TIMS 	 Food, Forensics, Doping control Chemical Analysis Industrial & Applied Analysis Petrochemistry Life Science Research Clinical Research Pharmaceutical Analysis
Bruker AXS	 X-ray Analysis X-ray Diffraction X-ray Crystallography X-ray Fluorescence 	 Materials Identification Materials Research Structural Proteomics Nanotechnology
Bruker Optio	 Vibrational Spectroscopy FT-IR FT-NIR Raman 	 PAT & Quality Control Materials Identification Materials Research Pharmaceuticals / Process

Bruker Corporation

One-stop for Analytical Success!

Focus on Pharmaceuticals Solutions For Increased Quality and Productivity

- Latest Solutions and Case Studies
 - Solid Form Determination of an API including formulated drug substances

• Determination of Polysorbate Degradation by EPR

• Biologics Higher Order Structure – Current Workflows and Practices

Solid Form Quantification Pharmaceutical Drug Development

- Physical forms of Active Pharmaceutical Ingredients (API) play a crucial role in Drug Development
 - 80% of API molecules exhibit polymorphism with a very wide range of physical and chemical properties
 - Criteria: Bioavailability, processability, thermodynamic stability, etc.
 - Choose best API form for development, formulation, production, storage
- No universal technique available to quantify physical API forms in solids
- Tool box of different methods: PXRD, RAMAN & IR, TGA, DSC and solid-state NMR
- General issues: high limit of detection & low accuracy, extensive calibration, time consuming, high expertise level, amorphization

Benchtop Solution for Solid Form Quantification Time Domain NMR

Time-Domain NMR (Relaxometry)

- Small external magnetic fields (e.g. 20 MHz)
 - No "chemical" information
- Time domain signal (FID) allows for measurement of physical properties:
 - Signal amplitude
 - Bulk Quantification
 - Solid vs liquid
 - Morphology
- Solid form quantification by combining the analytical power of NMR with an easy-touse solution:
 - Reliable minispec mq20 benchtop system
 - Well established Dynamics Center software

Solid Form Quantification

BRUKER

• the minispec Form Check

- Analyte = blend of two components with unknown quantities
- Pure component 1 = reference I
- Pure component 2 = reference II
- Calibration = fingerprint-measurements of both
 pure components (T₁ saturation recovery curves (SRCs))
- Data of analyte = linear combination of the two fingerprints
- Automated analysis within seconds via drag & drop of `Results' folders into the Dynamics Center:
 - ✓ Summary of all results
 - ✓ PDF & text reports for each analyte
- Results given in relative mass percentages of pure components in an analyte
- Patent pending

Case Study Anhydrous HCV Drug Polymorphs

- the minispec Form Check
- Anhydrous HCV drug polymorphs I & II (MSD)

D. Stueber, S. Jehle, J Pharm Sci., <u>106</u>, 1828-1838 (2017)

Focus on Pharmaceuticals Solutions For Increased Quality and Productivity

- Latest Solutions and Case Studies
 - Solid Form Determination of an API including formulated drug substances

• Determination of Polysorbate Degradation by EPR

• Biologics Higher Order Structure – Current Workflows and Practices

EPR Solutions for Pharma What is EPR?

- EPR is a magnetic resonance technique that detects **unpaired electrons**
- Unpaired electrons occur in free radicals and many transition metals
- Free radicals and transition metal ions are often present in APIs, excipients, and complete formulations

EPR Solutions for Pharma Why EPR? – Solutions!

There are at least 5 areas of interest where EPR spectroscopy is beneficial:

Free radicals & Transition metals

EPR solutions EMXnano package

EPR Solutions for Pharma

Polysorbate Degradation

Impurity profiling - EPR is able to detect free radicals and transition metals traces down to **parts per billion** levels!!!

An example: Polysorbate autoxidation

- Polysorbates used in drug formulation as a stabilizer undergoes autoxidation
- Autoxidation is catalyzed by transition metal ions and results in side-chain cleavage and free radical formation
- EPR detected, identified and quantified the three different free radical impurities

Lam X.E. et al.(Genentech Inc.), *Pharm. Res.* (2011) 28 2543

Focus on Pharmaceuticals Solutions For Increased Quality and Productivity

- Latest Solutions and Case Studies
 - Solid Form Determination of an API including formulated drug substances

• Determination of Polysorbate Degradation by EPR

• Biologics Higher Order Structure – Current Workflows and Practices

