Solving Challenges in Defect Inspection of Advanced Optics

Atomic Force Microscopy 3D Optical Microscopy Fluorescence Microscopy Tribology Stylus Profilometry Nanoindentation

Bruker Nano Surfaces Division

Innovation with Integrity

Welcome to the Webinar

• For best audio experience, everyone is on mute

• For questions, use the Chat

- Questions will be answered at end of webinar
- Webinar is recorded and will be available offline
 - Feel free to share and forward to colleagues

Foreword Bruker Nano Surfaces division

3D Optical Microscopy WLI & Focus Variation

Atomic Force Microscopy

Stylus Profilometry

Bruker Nano Surfaces Division Pioneers in Microscopy, Metrology & Mechanical Testing

Universal Mechanical Testing and Tribology

Hysitron Nanomechanical Testing

Multiphoton & Super-Resolution Fluorescence Microscopy

9/20/2019

Focus of today

- Quality control of high-end optics
 - On surface
 - Beyond classical visual inspection
- Solutions through direct measurement of topography
 - Non-contact profiler based on interferometry
- Information on automation and data processing
 - Strategy to detect defects on complex shapes
 - Strategy to measure large and aspheric optics
 - Final defect map

Background

Fine Optics for Advanced Applications Defect review

Inertial detection system / gyrolaser

eUV litho system

High Laser power Optics

- Usually smaller optics
 - Size below 100x100x80 mm3
- Performances of optics are critical
 - High-quality focus
 - Zero defect
 - 100% inspection
 - Manual and/or high-end polishing
- Defects cause:
 - Spurious diffraction/loss of function
 - Issue in assembly
- Defects can only be detected through topography measurement

9/20/2019

Metrics for High-Quality Optics

From Glass Processing Course (Lehigh University; Spring 2015) Tayyab Suratwala, Lawrence Livermore National Laboratory Sub-nm roughness Lateral resolution ~ 1 µm

9/20/2019

Non-Contact Interferometric Profiler

Non-Contact Interferometric Profiler Key components

Non-Contact Interferometric Profiler Core modes to get topography

Non-Contact Interferometric Profiler Core attributes

Non-Contact Interferometric Profiler Core attributes - illustration

Solutions for quality control

1. Power Spectrum Density

Power Spectrum Density Automatic acquisition

View Video

Automatic collection of full range Power Spectrum Density

Power Spectrum Density Single graph representation

Averaged power spectrum density (PSD)

9/20/2019

Bruker Confidential

2. Automatic inspection

Quality Control Defect review

Inertial detection system / gyrolaser

eUV litho system

High laser power optics

- Current solutions are time and user consuming
 - Manual inspection by operator
 - Normaski microscope
 - Inconsistency
 - User dependent
 - No vertical metrology
- Proposed solution
 - Full automation
 - Unattended operation
 - Complete metrology
 - Robust versus all situations

Quality Control Advanced mode to get topography

Quality Control Need for 100% automation

Bruker Confidential

Full Characterization of Defects Direct saving of all parameters

Y Diameter

14.667

3.911

6.845

μm

- A Diameter: mean diameter derived from defect area
- X & Y Diameters: length and width along X & Y directions
- Rp%: highest point for peak defect
- Rv%: deepest point for pit defect

Direct and automatic export of whole tab into CSV file

Direct Recording of Results Custom CSV file

No	Region	A Diameter μm	Rp% µm	X Diameter µm	Y Diameter μm						
1	•	17.129	1.35	29.335	14.667	Ŀ		A Diameter	Rv%	X Diameter	V Diameter
		6 1 4 2	0.75	6.945	2.011	No	Region	μm	μm	μm	μm
		0.143	0.75	0.845	3.911	1	-	12.385	-0.50	25.423	4.889
3		5.838	0.23	3.911	6.845			1			

Life database update

Time Row Column Islands Max A Diameter Max Rp% Max X Diameter Max Y Diameter Islands Max A Diameter Max Rv% Max X Diameter I	Max Y Diameter
μm μm μm μm μm μm μm μm μm	μm
R: N/A	R: N/A
Measurement Number M: N/A	M: N/A
Always	Always
Always	Always
1 7:30:49 PM 2 16 3 17.129 1.354 29.335 14.667 1 12.385 -502.628 25.423 4	4.889

Summary for peaks:

- 1. Number of detected peaks
- 2. Maximum average diameter
- 3. Maximum length of peak along XY directions

Summary for pits:

- 1. Number of detected pits
- 2. Maximum average diameter
- 3. Maximum length of pit along XY directions

Defect Detection by Slope Higher throughput and more robust

Topography image on aspheric

Derivative image

- Automatic analysis based on slope variation
- Robust and efficient way to spot defects:
 - Faster processing: directly from Raw image
 - Irrespective of shape/form/local slope
 - Robust versus noise or vibrations
- Multiple region analysis to get data on each defect

No	Region	A Diameter 🚽 µm	X Diameter µm	Y Diameter µm
19	3	13.692	13.690	14.667
10	ø	8.183	6.845	8.800
7	2	6.528	3.911	7.823
	Avg:	4.965	3.786	4.112
	Std:	1.734	1.970	2.227
Ske	ewness:	3.350	3.259	3.040
	Max:	13.692	13.690	14.667
	Min:	3.489	1.956	1.956
R	ange:	10.203	11.734	12.712

Defect Detection by Slope Illustration of throughput

Defect Detection Live monitoring

Number of peaks detected versus location

12-11 10-9-8 7 Islands (Multiple Region) 6 5 4 3. 2 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 0 2 4 6 8

Live statistic for all parameters

Database													
Measurement Number	Time R: N/A M: N/A Always Always	Row R: N/A M: N/A Always Always	Column R: N/A M: N/A Always Always	Islands R: N/A M: N/A Always Always	Max A Diameter µm R: N/A M: N/A Always Always	Max Rp% µm R: N/A M: N/A Always Always	Max X Diameter µm R: N/A M: N/A Always Always	Max Y Diameter µm R: N/A M: N/A Always Always	Islands R: N/A M: N/A Always Always	Max A Diameter µm R: N/A M: N/A Always Always	Max Rv% nm R: N/A M: N/A Always Always	Max X Diameter µm R: N/A M: N/A Always Always	Max Y Diameter µm R: N/A M: N/A Always Always
Avg:		22.000	16.500	0.087	9.775	0.674	12.86	11.07	0.036	11.275	-501.7	12.516	11.172
Std:		12.410	9.233	0.471	8.239	0.516	23.43	18.06	0.224	8.574	439.6	10.772	9.625
Max:		43.000	32.000	11.000	56.217	2.456	185.79	156.45	3.000	42.203	-119.5	46.936	45.958
Min:		1.000	1.000	0.000	3.489	0.108	1.96	1.96	0.000	3.659	-2521.1	1.956	2.933
Range:		42.000	31.000	11.000	52.728	2.348	183.83	154.50	3.000	38.543	2401.6	44.980	43.024

Maximum number of peaks detected for each row

9/20/2019

Bruker Confidential

Defect Mapping Excel display examples

Peak mapping on glass surface prior to cleaning

Peak mapping on glass surface after cleaning

	1 3	23	4	5	6	7 (89) 10	D 1	1 12	21	314	4 1	51	61	7 18	3 19	32	0 2	21 2	22	23	24	25	26	27	28	3 2	93	30 3	31 3	32			1 :	2	3	4	5	6	7	8	9	10) 11	1 12	2 13	14	- 15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30) 31	1 32	2
1	0	16	0) ()	0	2 1	0 1	5	i 0) () () () () (0 🥻	2 0	2	(0 1	0	3	0	0	0	1	1	1	2	2	1	0	5	1	1	0) -	1 () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	
2	0	2 1	1 1	0	2	2 1	0 0) () () () () () () (0 () 1	0		1 1	0	1	0	0	0	2	0	- 0	3	1	2	0	3	2	0) () () () (0	0	0	0	0	0	0	0	- 0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	2	1 1	0) ()	2	4 1	0 4	L 1	1	0) () 1	1 0	0 1	1 () (0	L (D	1 1	0	0	1	0	0	1	1	0		2	0	6	3	0) () () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	2 .	11 1	1	14	0	0 1	0 0) 1	0) () 4	1 C) () (0 2	2 0	2	- (0 :	3 1	0	1	0	2	0	0	1	0		2	1	0	4	0) () (0 0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
5	8	5 0	1 1	11	ñ.	ñ i	n n	1 1	1	l n	i r	i n	i n	i i	n i	1 0	1		11	4	ñ	4	10	0	ñ	Ő.	0	1		n	1	ñ.	5	- n	i n	i i	i i	i i	ñ	ñ	ñ	ñ.	ñ.	- ñ	- ñ	ñ	- ñ	- ñ	- ñ	- ñ	ñ.	- ñ	ñ.	ñ.	ñ	ñ.	ñ	- ñ	- ñ	- ñ	- ñ	- ñ	- ñ	Ō	- ñ	n.	
Ğ	13	9 1	15	5 5	ñ	1	2 0	1		i õ		i i	i i	i i	n n	i č	0	1	n 1	n i	ñ	ń.	0	ň	ň	ň	ň	0		ñ	n –	2	ă	ň	i õ	i i	i i		ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	1	ň	1	ň	2	ň	ň	ň	ň	ň	ň	
7	22 1	13 1	5	11	1	A	0 0	0	i õ	íŏ	ί.	i č	ič	ii	ñ	ič	ŏ	ì	ñ i	ñ i	ň	ň	4	ň	ň	ň	ŏ	ŏ		ă.	ň	ñ	7	ŏ	í ŏ	í	í	1	ň	ň	ň	ň	ň	1	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	n.	ň	, n	ň	n.	ň	ň	ň	ŏ	ň	ň	
6	0 1	0 0			4.0	- -	4 3	1						1		1	0				ň		7	ŏ.	1	ň		ŭ		4	õ.	õ	6						ŏ	ŏ	õ.	ő			- O		ŏ	1	, ŭ		2	ů.		ő		- ŭ			ň		ŏ	ň	- ŭ	ŏ	- ŭ		
0	2		4	0		5	4 Z							1		1	1 1				8	4		8							8	8	0					(- I	1	8	8								0		0																
3	2	0 0		0	0	4 1	3 4		- 4	4			2 4	<u> </u>						2	9	4	0	0		0	0			U O	0	0	3							0	0	0				0																	0			0	
10	2	9 Z		U U	0		3 U			U					υι					0	<u>.</u>	6	ь	3	4	U	0	0		U	U	U .	10						U .	0	U.	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	4	2 4	2	- 1	4	2	υυ	3		U					υι		0		1 3	33	U	2	8	U	U	U	ь	U		U	U	U		U			J		U	U	U	U	U	0	U	U	U	U	0	U	0	U	U	U	U	U	U	0	U	U	U	U	U	U	0	U	
12	2	1 2	2 1	15	1	1	2 1	U		1	ιt	Jι	Jι	J I	υι	Jι	0	I I		8 3	2	U	2	U	U	U	- 2	- 2		U	U	U	12	U	U U	, i	JU	1	2	U	U	U	U	U	U	U	U	U	0	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	0	U	
13	2	0 1	0) ()	1	1	1 0) () () 2	2 3	3 0) () (3 '	1 0	12	2 '	1 1	0	1	1	0	0	2	0	0	0	1	0	0	0	13	0) () () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
14	1	1 0	1	0	0	0 1	0 0) () () () () () () (0 () 2	4	1	3 :	2 !	5	9	7	0	1	- 3	2	0) (0	0	0	14	0) () () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
15	0 1	0 0) () ()	0	1	1 0) (1 2	2 0) () () () (0 '	1 0	0	L (D	1	1	2	1	0	2	3	0	0	1 1	0	1	0	15	- 0) () () () (0	0	0	0	0	0	1	0	- 0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16	0 1	0 0) (0 (0	1	1 0) () 1	0) 1	1 0) () (0 () 1	1	(0 1	0	1	0	0	0	0	1	- 7	0) (0	0	0	16	0) () () () (0	0	0	0	0	0	0	0	- 0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
17	0 1	0 1	0) ()	0	0 1	0 0) (1 2	2 0) -	1 1	1 0) (0 4	4 C	0	Ē (0 1	0	1	4	0	0	2	0	9	0		1	0	0	17	0) () () '	1 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	
18	1	1 0) ()) ()	0	0 1	0 0) () () () () 4	1 1	1 3	2 2	2 0	0	1 2	2 1	0	1	0	0	0	1	4	6	0	1	0	0	0	18	0) 1	1 0) () (0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	2	0	3	0	0	0	0	0	0	
19	1 :	2 0	0	0	0	Ö I	0 1	0	1	0	1 0	1 2	2 0	1 1	0 0) (1	(0	1	0	1	5	5	2	7	13	1		Ő.	Ő.	Ō.	19	0) 0) -	1 0) (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
20	0	n n	i ñ	i ñ	ñ	ñ i	0 1	n n	i d	i n	i i	i n	1 0	i i	n r	i c	0		2 1	n i	1	i.	5	- i -	0	2	2	0		ñ	ñ	ñ.	20	0	0) () () I	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	ň	ñ ñ	ñ	1	ň	ň 📑	2 0	1 3	i i	íõ	ii	ič	i č	i i	n i	i i	ň		4	ň	i -	<u>5</u>	Ă	2	1	2	1	1		ň	ň	ň	21	- ñ	i ñ	i i	i i	i 1	ñ	ñ T	n i	ñ.	ñ.	- ñ	- ñ	ň	- ñ	Ō	- ñ	Ő.	ñ.	Ō.	Ő.	Ô.	ñ	ñ.	ñ	Ő.	- ñ	Ő.	- ñ	ñ.	- ñ	1	n.	n.	
22	n i	2 0	í ñ	14	ň	ň	2 1	í a	i a	í o	í	i i	i č	í l	1 0	i e	i õ		5 -	2 3	21	15	20	ā.	ė.	- 1	Å	12	2	1	ň	ŏ	22	- ñ	i õ	i i	i i		ň	ň	ň	ň	ň	1	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	ň	1	ň	ň	0	ň	ň	
22	1	0 0	, ŭ	0	ň	ň.	1 0		i o	, u	í d			í.,		1 10	1 2	4 1	5	4 1	10	20	11	27	4	5	- 7	0	1	4.5	1	õ	23	ŏ	í ŏ	ì	í	1	ň	ň	ň	ň	1	, n	ŏ	ň	ŏ	ŏ	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	ň	ň	, n	ň	ň	ŏ	ň	ň	
23	÷ 1	0 0	, ,	, ,	Ö.			, ,		, ,					4 2	+ K D +	1 6		4 1	ч 1	10	10	2	37	2	- 5		2	· ·	-	-	2	24	- ŏ	, o	í	, i	í	ň	ň	ň	ň	0	ň	ŏ	ň	ŏ	ő	ň	ň	ň	ŏ	ň	ň	ň	ň	ň	ň	1	ň	ŏ	ň	ň	ŏ	ň	ň	
24						8	0 U 0 C										1 0			14	13	12	5	÷.	0	- 4	- 0	- 3		6	2	2	24	- 1	1 1				ň	õ.	õ.	ň			ŏ		ŏ			ň	0	ő		ő		ň				0	ŏ	ň	ň	ŏ	ň		
20	0	0 3	5 3		0	0	0 0								υι	5 6	10	5 4		13	3	10	0	4	ь	- 2				2	0	U D	20						0	Ö	8	0									0			0	1	0				0						0	
26	0	0 0					υυ	1 3		2		1 6				I E			4 3	52	<u>.</u>	18	4	4	U	U	0	5		U	U	U	20				2 <u>2</u>		0	0	8		0				0		- 0	0	0		0	0		0	0	0		0			0			0	
27	0	υu	U U		U	0 1	0 2	- 1				1			U 4	1 14	1 20	JŽ	21 2	21 3	30	6	5	0	1	6	5	6		U	0	1	27						U o	0	0		U	0		0	0		3	U	0	0	0	0	0	0	0	0	0	0		0	0		0	0	
28	3	1 0	4	2	1	0	0 0	1	U	1 2	- 7	<pre>/ 0</pre>) ()	1 (1	- 4	. {	3 1	8	7	14	18	9	9	9	15	0		3	0	0	28	U			J		U	U	U	U	U	0	0	U	U	U	0	U	0	U	U	U	U	U	U	<u> </u>	U	U	U	U	U	U	0	U	
29	5	1 1	1	1	2	0 1	0 0) () () () () () () (0 () (2	. (יכ	0	1	0	1	8	- 9	- 12	15	4		0	9	1	29	U	U U	, i	J		U	U	U	1	U	0	1	U	0	0	0	0	0	0	0	0	U	0	U	0	U	U	0	0	0	0	0	U	
30	0	0 4	0) ()	0	1	1 2	2 0) () () () () () (0 () (0	L (וכ	0	1	1	1	-4	- 3	- 7	12	8	8 3	3	13	3	30	U	U U	ι	J		U	U	U	U	U	U	0	U	U	U	0	U	U	0	U	U	U	U	U	U	1	U	U	U	U	U	0	U	
31	0 1	0 0) ()) ()	0	2 1	0 0) 1	0) () () () () (0 () (3	(0 1	0	1	10	10	5	- 7	- 16	10) 3	<u>ا ا</u>	1	0	0	31	0) () .	1 () (2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
32	0 1	0 1	0	0 (0	0	1 1	0) () () () () () (2 (0 1	0	L (0 1	0 1	0	2	8	11	- 12	- 8	- 9	- 7	1	0	2	5	32	0) ()) () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	
33	4	0 1	0) ()	0	0 1	0 0) () () () () () () (3 () (1	- (0 1	0	1	0	11	20	9	21	2	1 9		2	1	7	33	0) 1	1 0) () (0	0	0	2	0	0	0	0	- 0	0	2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
34	2 1	0 0) ()	0 (0	0	1 0) () () ()	1 0) (0 1	1 () 1	0	Г (0 1	0	1	1	0	1	3	7	33	3 1	1	5	1	0	34	- 0) () () () (0	0	0	0	0	0	0	0	- 0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	
35	2	0 2	0	0	0	0 1	0 0) (1 0) () () () () (0 () (0	- (0 1	0 1	0	0	0	0	0	1	2	0	1	1	0	0	35	- 0) () () () (0	0	0	0	0	0	0	0	- 0	0	- 0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	- 0	0	1	
36	4	1 0) ()	0	0	0 1	0 1		1 0) () () () () (0 () с	1	1	3 1	0	1	0	0	0	2	0	1	0	1	0	1	3	36	- 0) () () () (0	0	0	0	1	0	1	0	- 0	0	- 0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	- 0	0	0	
37	21	n 1	1	n i	ñ	ñ i	n n	i n		1	l i	i n	i d	i i	n r	i c	0	L I	1 1	n i	n i	ñ	ñ.	ñ.	0	2	- 9	0		ñ T	n –	1	37	0) () () () (0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
38	1	n n	n n	i ñ	ň	ñ	ñ ñ	ī	1 0	1 0	i i	ic	i i	i i	ñ	i č	Ň	i i	n i	n i	2	ň	ň	ň	ň	0	3	- ñ		ñ	ň	n.	38	0) () () () (0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
39	0	n n	í ñ	í ñ	ň	ŏ	n n	íŏ	īč	íŏ	iì	íč	ič	ii	ň	i i	ŏ	ì	ñ i	n i	n	ň	ň	1	ň	7	ŏ	- ŭ		ň	ň	ŏ	39	0) () () () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1	1	0	0	0	
40	ň i	0 0	í ő	1	ň.	1	0 0	1		0	í	ič	ič	ii	n i	1 2	0	1	5 1	ñ i	ň	ň	ň	<u>.</u>	ň	4	ő	ŏ		ň	ň	õ	40	Ū.	i i	i i	i i	i i	ñ	Ő.	ñ.	Ő.	Ő.	2	Ū.	Ō	Ō	Ō	- ñ	Ő.	1	Ő.	Ő.	Ő.	1	Ő.	Ō	Ő.	0	0	Ő.	0	0	Ō	1	Ô.	
41	1	0 0	, o	11	2	ò i	0 0	1			í	ič	i	ii	n i	1 6	0	1	5 1	ñ i	ň	ň	ň	ň	ň		0	ŏ		ň	ň	õ	41	0	i o		1 (i i	Ő.	ō -	Ô.	Ő.	1	0	1	Ō	Ō	1	Ū.	Ő.	0	1	Ő.	Ő.	0	Ū.	Ō	Ō	Ō	1	Ő.	Ő.	Ő.	Ō	0	0	
41		0 0			4	8 3	0 U 0 C														0	8	ů.	4	- 0	ů.				0	8	8	42	1	í ñ	í r	1 1	1	ň	ň	ň	ň	÷.	1	, n	ň	ň	0	ň	ň	ň	, n	ň	ň	ň	ň	ň	1	ň	n.	ň	ň	2	ň	1	ň	
42		0 U		41	4	8 3	0 U			2					0 (0 (U O	0	0			U	0			U o	0	0	12	0	1 1	í í	í E	2	ň	ň	ň	ň	n.	- n	ň	ň	1	ň	ň	ň	ň	ň	1	ň	ň	ň	ň	, n	ň	ň	1	ň	ñ	1	n.	ň	
4J	0	υU) U	1	U	UI	υι) U	i U	U U	J	J	J	J	υι	JU	0		1	3	U	U	U	U	U	U		U		U		U	40	U					5	9	0	0	0	0	0	0		0	0	0	0			0	0	0	0	0	0	0		0	0		0	0	1
												-		-					T	_			.																		-							~	c					I		~~					T						
					T	ota	al I	Nι	ım	۱b	er	Ď	ef	e	cts	5				2	23	62	2		ŧ	ŧ																ot	tal	N	un	nb	er	De	ete	cts	5				12	20			#								
							•			-										_	~	-																			•							1. 1	1.	-	.				2	-											
			Maximum Peak Height										3.	5			μr	m															N	via	IXI	m	um	11	ea	K	le	ıgr	IT				2	.5			μr	n															
												-						-		-																														~																	
					Maximum Length Extension									۱I		49	93			ur	m															11	via	iXi	m	um	۱L	en	gt	ηE	:xt	en	SIC	n	1	18	36			μr	n												

Defect Mapping Display of critical defects

- Severity factor can be worked out from multiple parameters:
 - Number of defects
 - Maximum length of defect
 - Maximum depth/height of defect
- User can place weight on each of those parameters to work out final ranking of severity
- Sphere width represents here the value of severity, providing visual comprehensive map of main defects
- Operator can easily judge if defects are located in too sensitive a region

3. Solution for large and aspheric optics

Large and Aspheric Optics Unique solution

Roughness repeatability – 1X objective

Courtesy of TNO, Delft

9/20/2019

Conclusion

- Non-contact interferometric profiler has shown full capability to:
 - Spot defect in effective way
 - Fully characterize each defect
- Main reasons for reliable defect review:
 - Robust measurement modes
 - Complete software automation suite
- Defect review extends to large and aspheric optics with large frame
- Extra discussion needed? Contact <u>Samuel.Lesko@bruker.com</u>

www.bruker.com

© Copyright Bruker Corporation. All rights reserved.