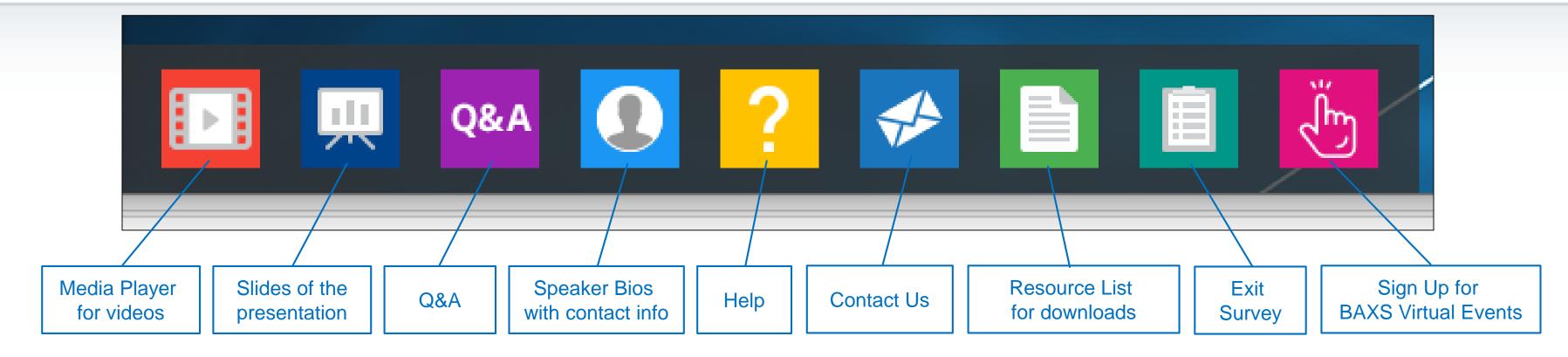


Tips and Tricks for Making Your Own **Secondary Standards for XRF**



July 28, 2020

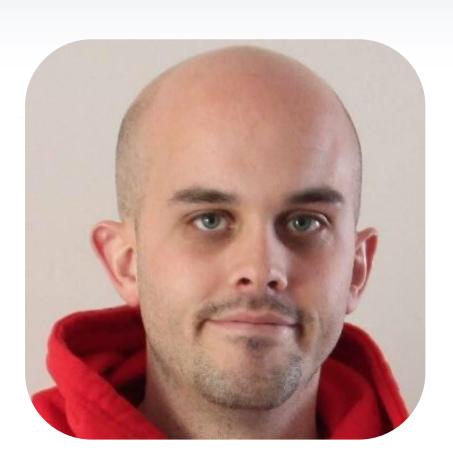
Interact with Us!

- All the tools are resizable and movable. You can expand your slide area or maximize it to full screen by clicking on the arrows in the top right corner.
- If you have any questions during the webcast, you can submit them through the Q&A tool.
- You can Contact Us at any time to request more information or discuss your application and instrumentation needs.
- Check out our Resource List to download a copy of today's slides, as well as brochures, application notes and lab reports.
- We recommend closing any programs or browser sessions running in the background, and logging off your VPN if applicable.
- Audio is being streamed through your computer, so there is no dial-in phone number.
- If your slides fall behind with respect to the audio, press the F5 key on your keyboard to refresh the page.
- At the end of the webcast, you'll be presented with an Exit Survey please let us know how we did.
- Sign Up for our other upcoming and on-demand webinars at BAXS Virtual Events 2020.
- An On-Demand version of this webcast will be available tomorrow at the same audience URL.

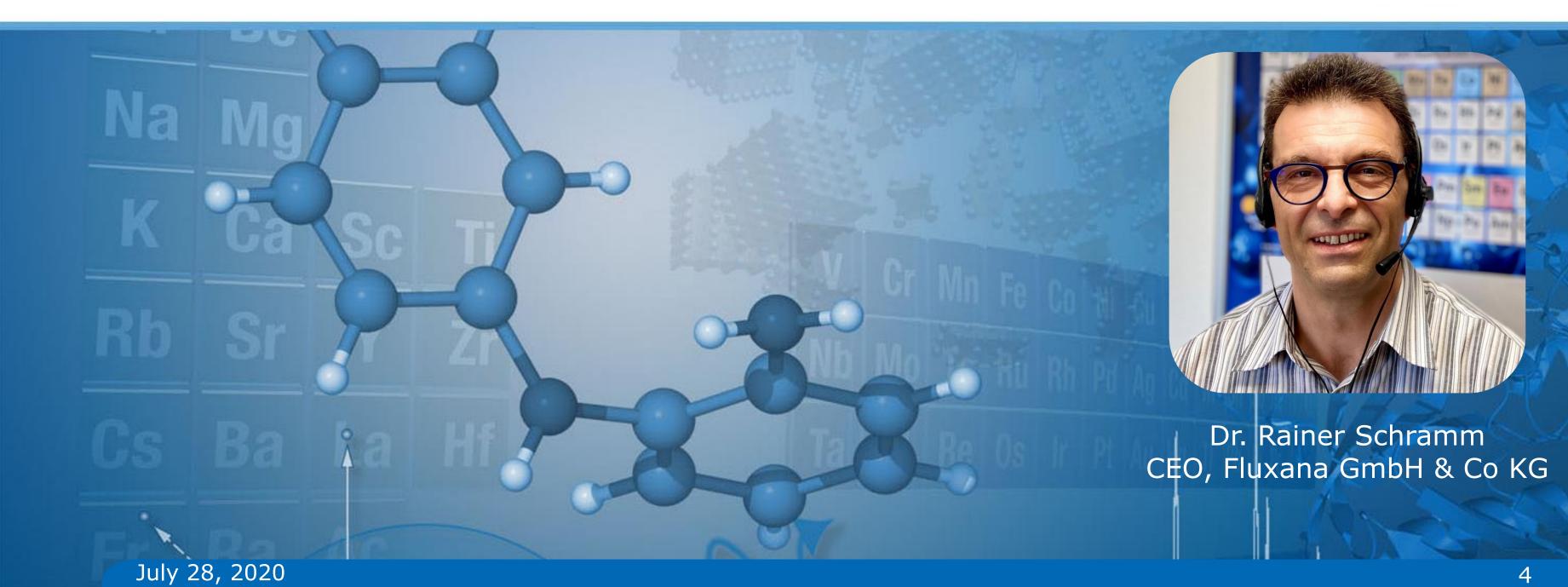
Speakers

Archibald Harris

XRF Applications Specialist, Bruker AXS GmbH

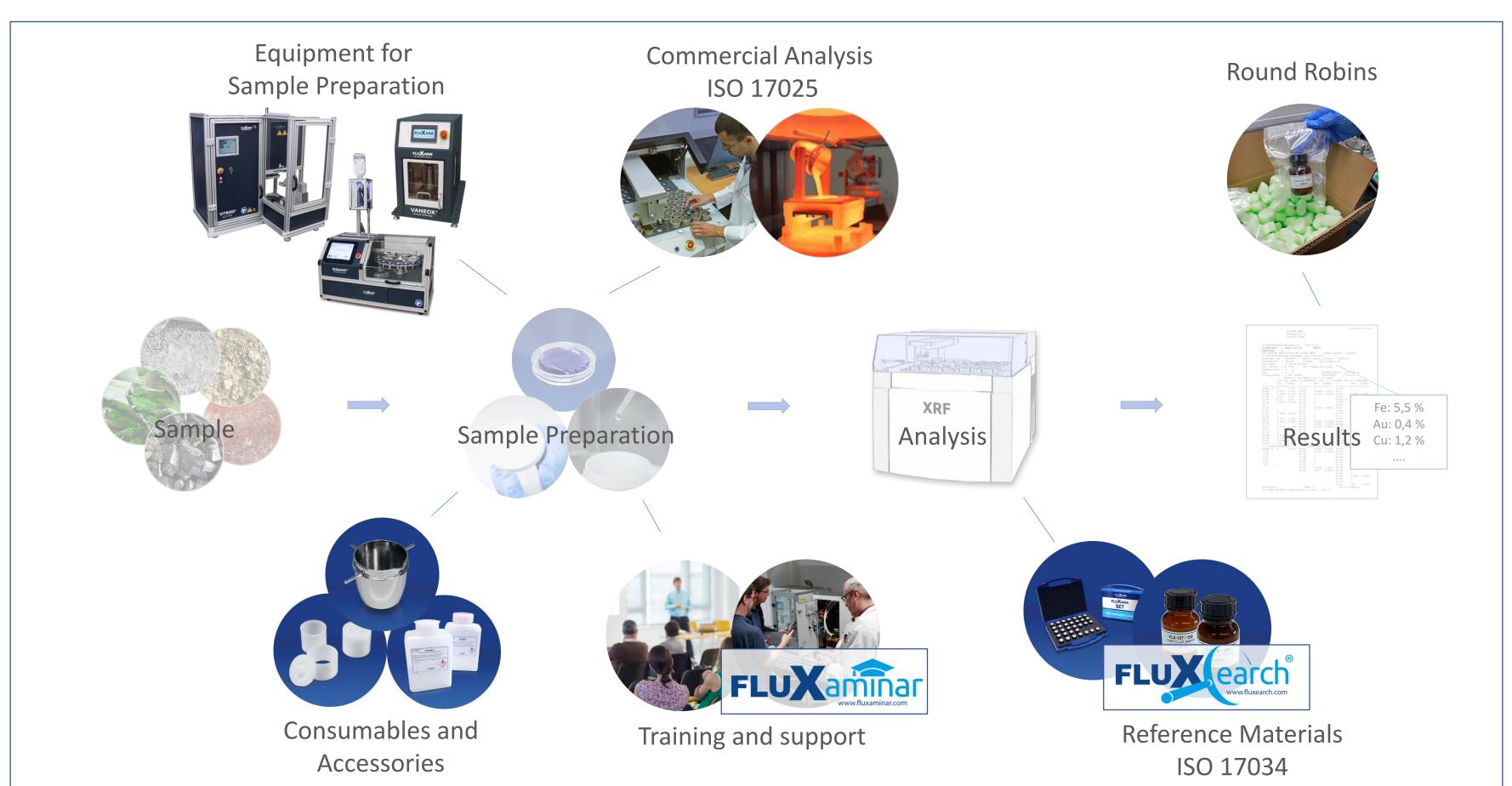

archibald.harris@bruker.com

Dr. Rainer Schramm CEO, FLUXANA GmbH & Co KG rschramm@fluxana.com



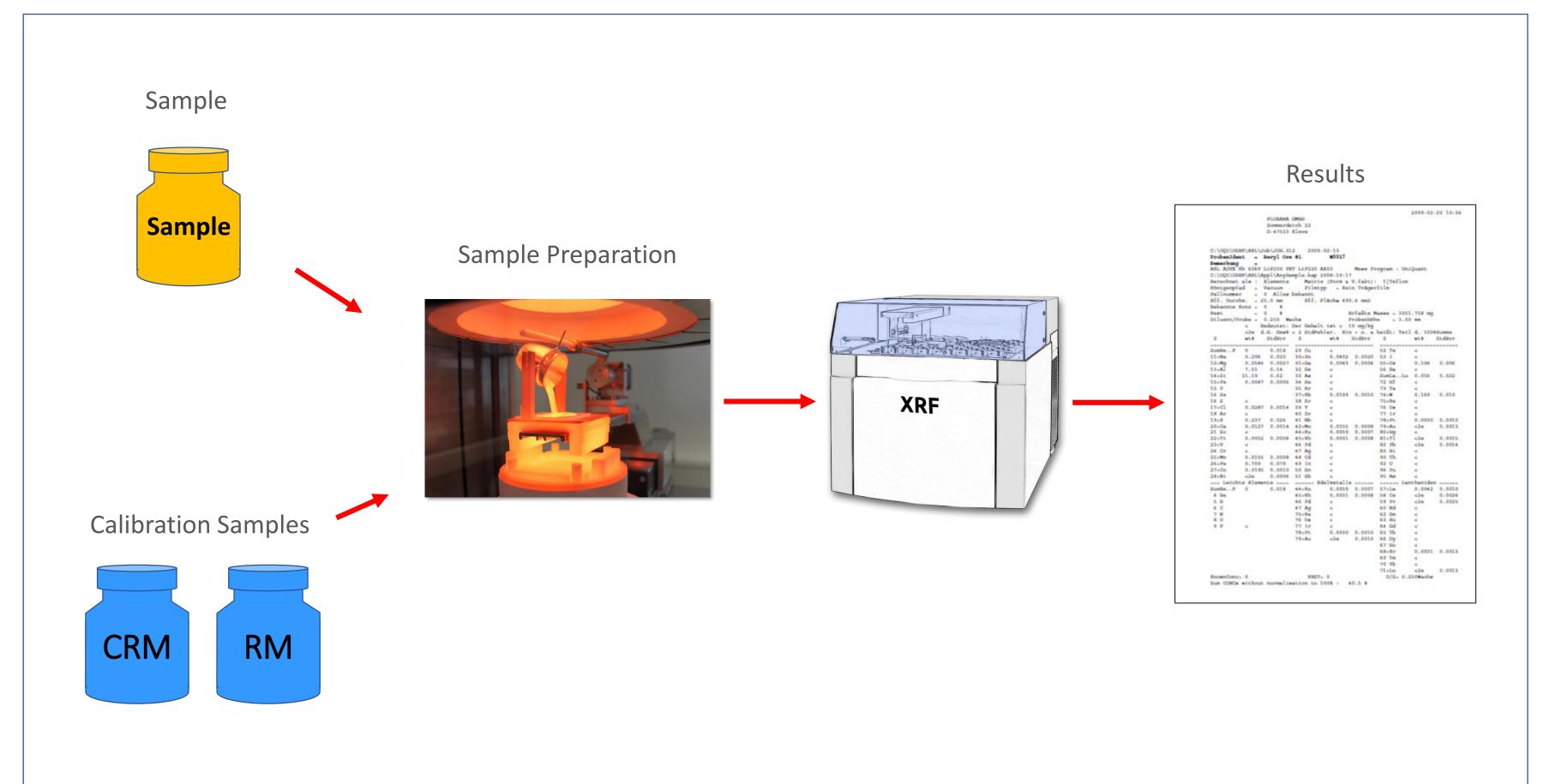
Dr. Colin Slater R&D, Bruker AXS GmbH colin.slater@bruker.com

Tips and Tricks for making your own secondary standards for XRF


Dr. Rainer Schramm

Online Seminar, 28.07.2020

FXPP_1001_06d


FLUXANA: Introduction

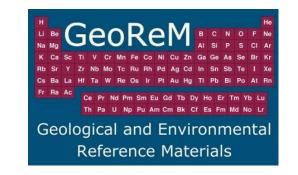
XRF Application development



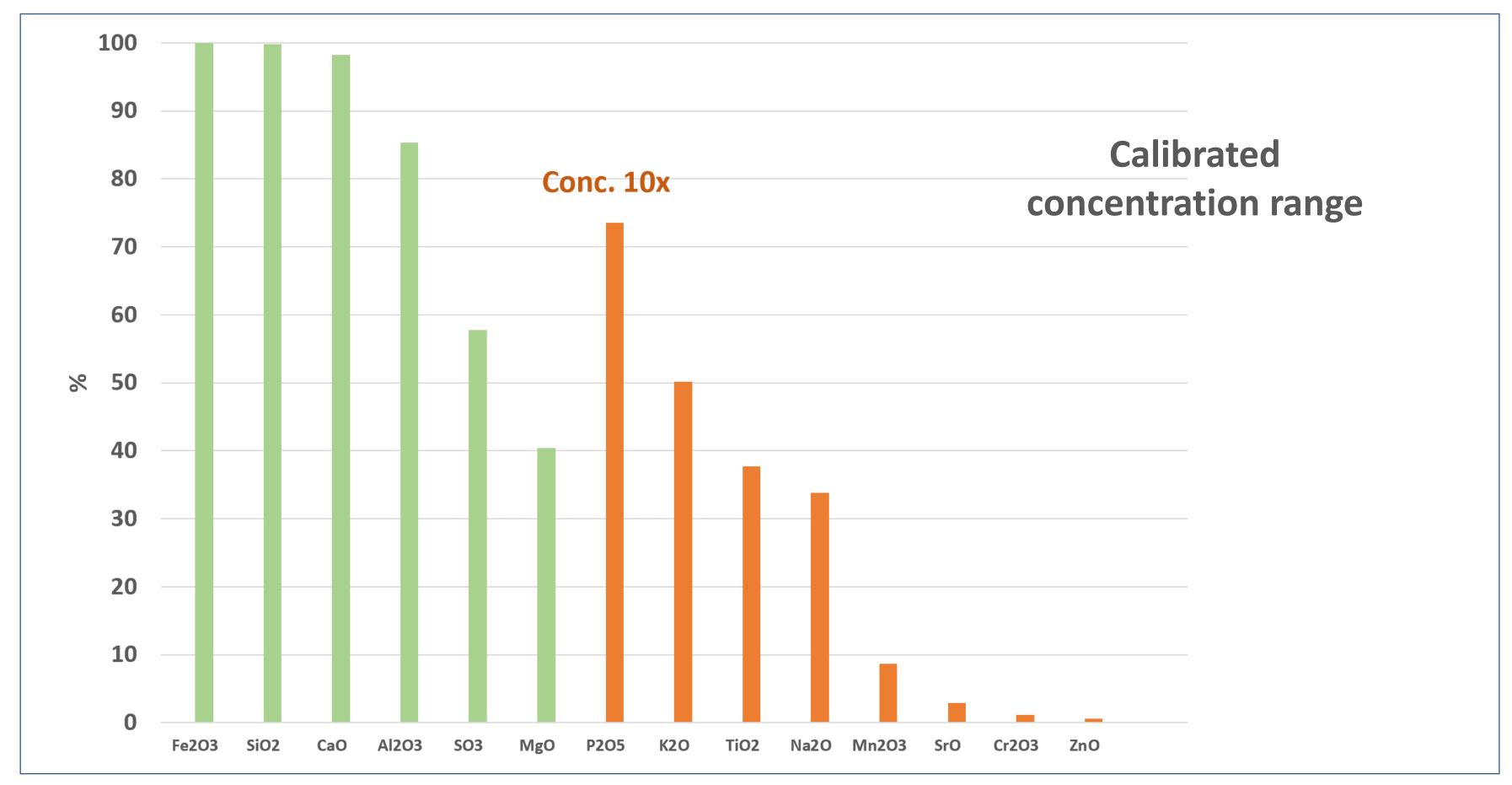
Hydrogen																	Helium
³ Li	¹ Ве											B	° C	⁷ N	[®] O	9 F	Ne
Lithium 6.94	Beryllium 9.0121831											Boron 10.81	Carbon 12.011	Nitrogen 14,007	Oxygen 15.999	Fluorine 18.998403163	Neon 20.1797
Na Sodium	Mg Magnesium											Al Aluminium	Si Silicon	Phosphorus	Sulfur	CI Chlorine	Ar Argon
9 K	²⁰ Ca	Sc	Ti	²³ V	²⁴ Cr	Mn 25	Fe	Co	Ni Ni	Cu	³⁰ Zn	Ga	Ge 32 Ge	33 As	34 Se	35 Br	36 Kr
Potassium 28,0083	Sr Sr	Scandium 44.955908	Zr	Vanadium 50.9415	Chromium 51,9961 42	Manganese 54,938044 43	Ru	Cobalt 58.933194 45 Rh	Nickel 58.6934 46 Pd	Copper 63.546 47 Ag	48 Cd	49 In	Germanium 72.630	Arsenic 74.921595	Selenium 78.971 Te	Bromine 79.904	Krypton 83.798 54
Rubidium 85.4678	Strontium 8782	Yttrium 88.90584	Zirconium 91.224	Niobium 92.90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101.07	Rhodium 102.90550	Palladium 106.42	Silver 107.8682	Cadmium 112,414	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	lodine 126.90447	Xenon 131.293
Cs Caesium	Ba Barium	57 - 71 Lanthanoids	Hafnium	Ta	74 W Tungsten	Re Rhenium	OS Osmium	77 Ir	Pt Platinum	Au Gold	Hg Mercury	TI Thallium	Pb Lead	Bi Bismuth	Po Polonium	At Astatine	Rn Radon
7 Fr	88 Ra	89 - 103 Actinoids	104 Rf	180.94788 105 Db	106 Sg	186.207 Bh	108 Hs	192.217 109 Mt	195.084 DS	111 Rg	^{200.592}	113 Nh	207.2 114	208.98040 115 MC	(209) 116 LV	117 TS	118 Og
Francium (223)	Radium (226)	ricultura	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

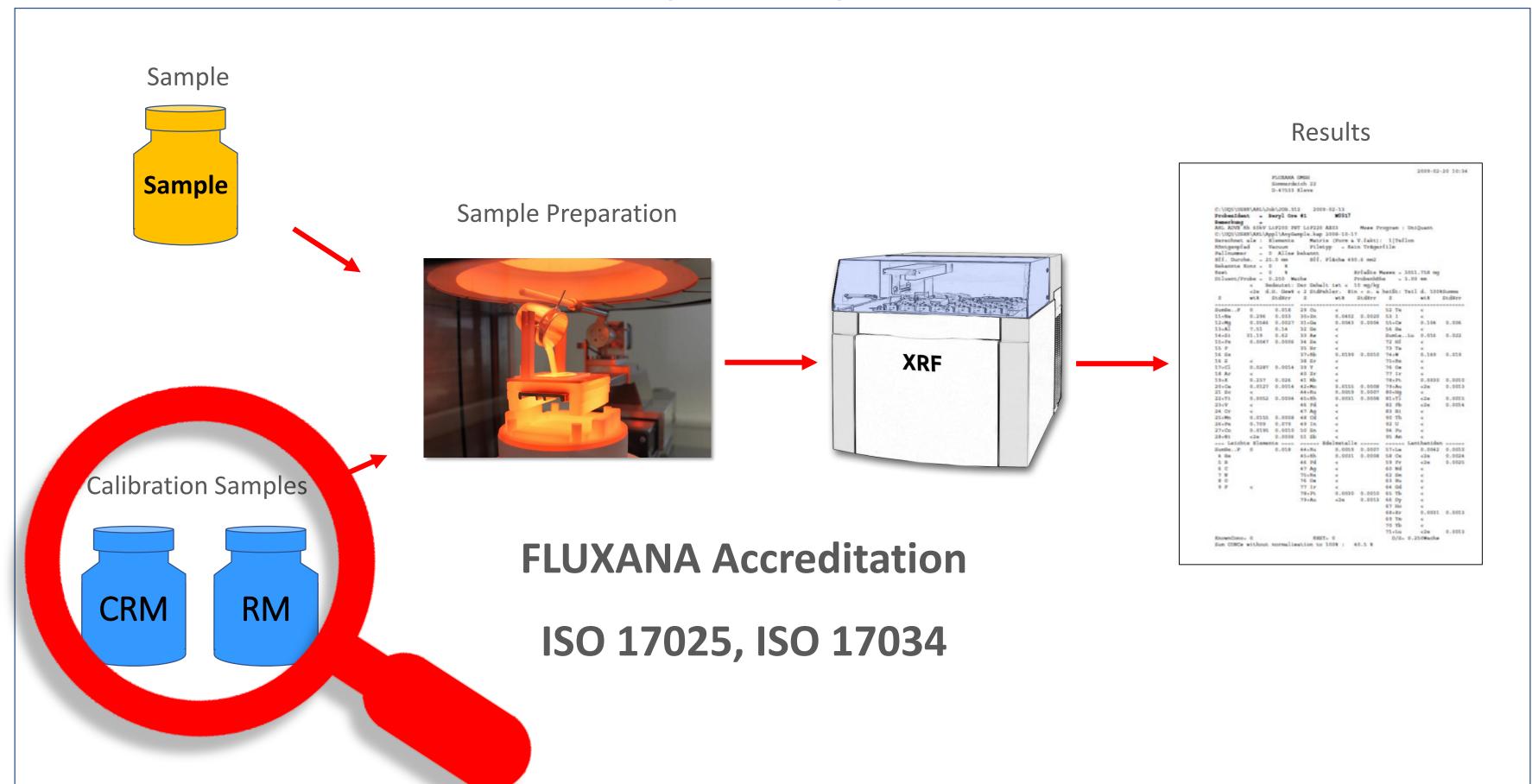
Lanthanum	Cerium 140,116		Neodymium	Promethium	Sm Samarium 150.36	Europium	Gd Gadolinium 157.25	Tb Terbium 158.92535	Dy Dysprosium 162.500	Ho Holmium 164.93033	Erbium 167.259	Tm Thulium 168.93422	Yb Ytterbium 173,045	Lu Lutetium 174.9668
Actinium	Th Thorium	Protactinium	92 Uranium	Np Neptunium	Plutonium	Americium	Cm Curium	97 Bk Berkelium	Cf Californium	Es Einsteinium	Fermium	Md Mendelevium	No Nobelium	Lr Lawrencium

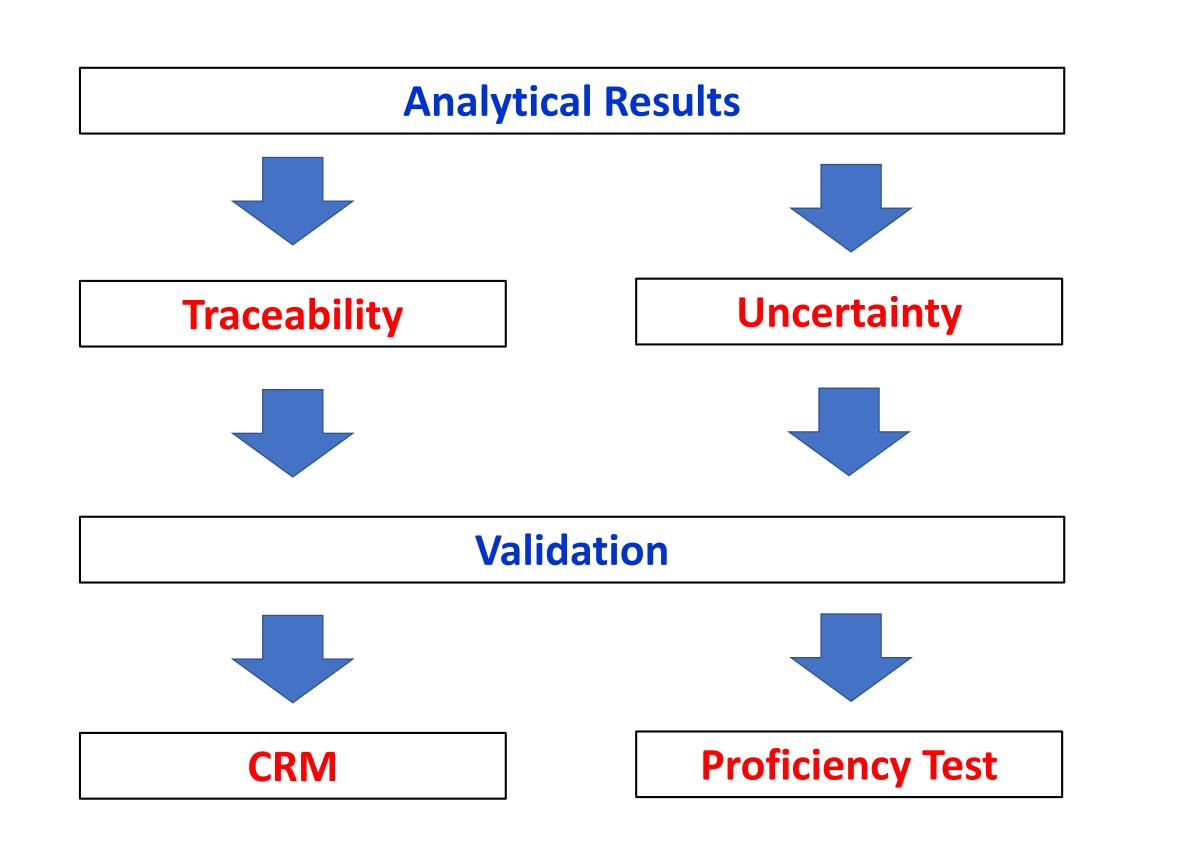
Commercially available reference materials

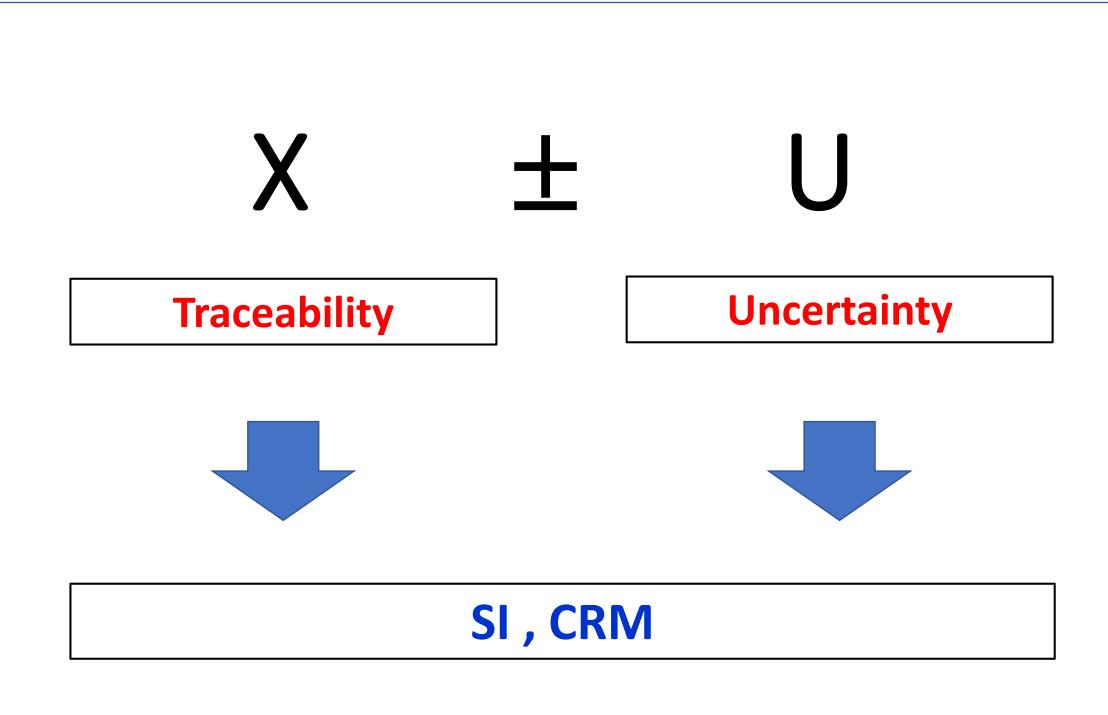


Free accessible databases for the search of reference materials


Database	Reference
FLUXearch	www.fluxearch.com
COMAR	www.comar.bam.de
GeoReM	georem.mpch-mainz.gwdg.de



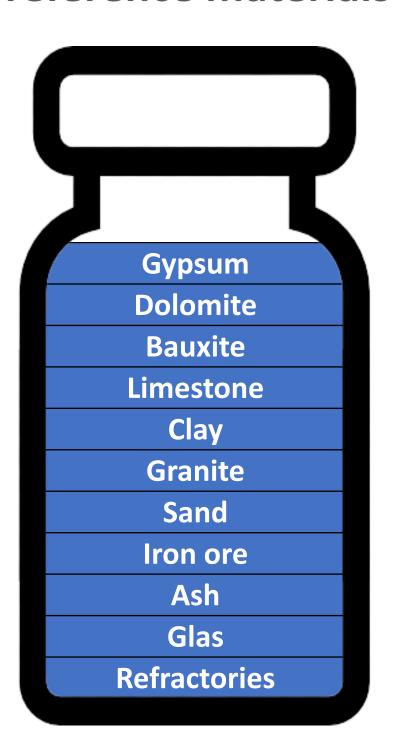

Traceability of Analytical Results


Traceability of Analytical Results

Traceability of Analytical Results

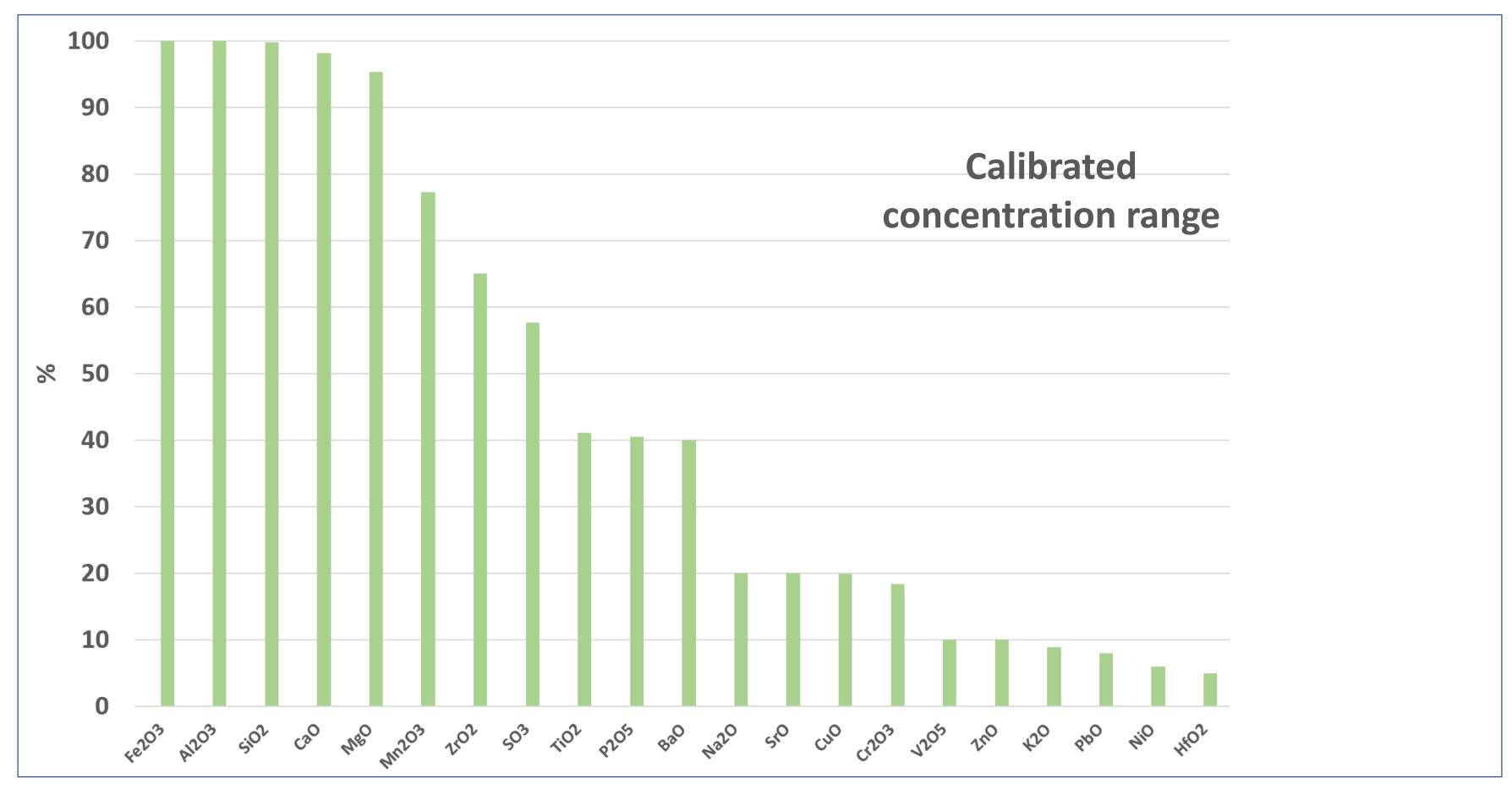
GEO-QUANT Basic application package

- Certified reference materials
- 10g powders
- Easy to use according customer needs
- Software template for calibration
- Includes drift monitor samples
- Includes validation samples
- Ready to go

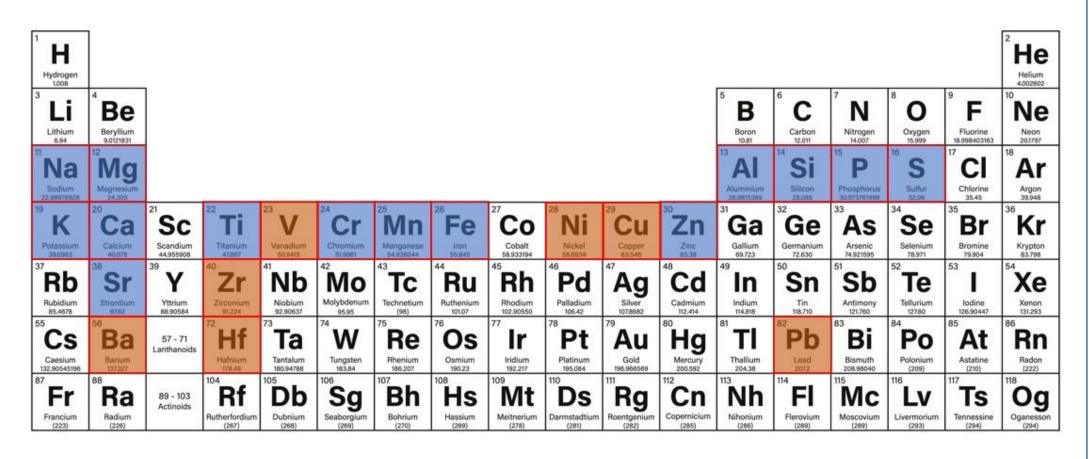


1 Hydrogen																	Helium 4,002602
³ Li	¹ Be											B	° C	⁷ N	[®] O	F	⁰Ne
Lithium 6.94	Beryllium 9.0121831											Boron 10.81	Carbon 12.011	Nitrogen 14.007	Oxygen 15.999	Fluorine 18.998403163	Neon 20,1797
Na Sodium 22.98976928	Mg Magnesium 24,305											Aluminium	Silicon	Phosphorus	S Sulfur 32.00	Cl Chlorine 35.45	Argon
Potassium	Ca Calcium	Scandium 44.955908	Til Titanium	Vanadium	Cr Chromium	Manganese 54938044	Fe Iron 55,845	Co Cobalt 58,933194	Nickel	Cu Copper	Zn Zinc 68.38	Gallium	Ge Germanium	33 As Arsenic 74.921595	Se Selenium 78.971	Bromine	Krypton 83.798
Rb Rubidium	Sr Strontium	39 Y	Zr Zirconium	Nb Niobium	Mo Molybdenum	TC Technetium	Ru Ruthenium	Rh Rhodium	Palladium	Ag Silver	Cd Cadmium	In Indium	Sn _{Tin}	Sb Antimony	Te Tellurium	53 lodine	Xe Xe
55 Cs	56 Ba	88.90584 57 - 71 Lanthanoids	91,224 72 Hf	73 Ta	95.95 74 W	75 Re	76 Os	102.90550 77	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
Caesium 132,90545196 87	88 Ra	89 - 103 Actinoids	Hafnium 178.49	Tantalum 180.94788	Tungsten 183.84	107 Bh	Osmium 190.23	109 Mt	Platinum 195.084	Rg	Mercury 200.592	Thallium 204.38	114 F	115 MC	Polonium (209) 116 LV	Astatine (210)	118 Og
Francium (223)	Radium (226)	Actinoids	Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Meitnerium (278)	Darmstadtium (281)	Roentgenium (282)	Copernicium (285)	Nihonium (286)	Flerovium (289)	Moscovium (289)	Livermorium (293)	Tennessine (294)	Oganesson (294)

Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Sm Samarium 150.36	Europium	Gd Gadolinium	7b Terbium 158.92535	Dy Dysprosium 162.500	Ho Holmium 164.93033	Erbium 167.259	69 Tm Thulium 168,93422	Yb Ytterbium 173,045	Lutetium
⁸⁹ Ac	⁹⁰ Th	⁹¹ Pa	⁹² U	⁹³ N р	Pu Pu	⁹⁵ Am	[®] Cm	97 Bk	⁹⁸ Cf	⁹⁹ Es	Fm	Md	No	Lr
Actinium (227)	Thorium 232.0377	Protactinium 231,03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)


Commercially available reference materials

Lack of reference materials for Zr, Hf, Pb, Zn, Ni, Cu



Solution:

Use of pure chemicals like SiO2, CaCO3, MgO, Al2O3, etc.

57 La Lanthanum 138.90547	Cerium	Pr Praseodymium 140.90766	4.00	Pm Promethium (145)	Sm Samarium 150.36	Europium	Gd Gadolinium 157.25	7b Terbium 158.92535	Dy Dysprosium 162.500	HO Holmium 164.93033	Er Erbium 167.259	Tm Thulium 168.93422	70 Yb Ytterbium 173,045	Lu Lutetium 174.9668
⁸⁹ Ac	[∞] Th	^{⁵¹} Pa	⁹² U	⁹³ N р	Pu	⁹⁵ Am	°Cm	97 Bk	⁹⁸ Cf	Es	Fm	Md	No	Lr
Actinium (227)	Thorium 232.0377	Protactinium 231,03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Preparation of Calibration Samples

Pretreatment of primary chemicals for traceability

Preparation of Calibration Samples

As powder mixture in a bottle:

Risk of inhomogeneity

As fused glass powder in a bottle:

Perfectly homogeneous



Preparation of Glass Powder

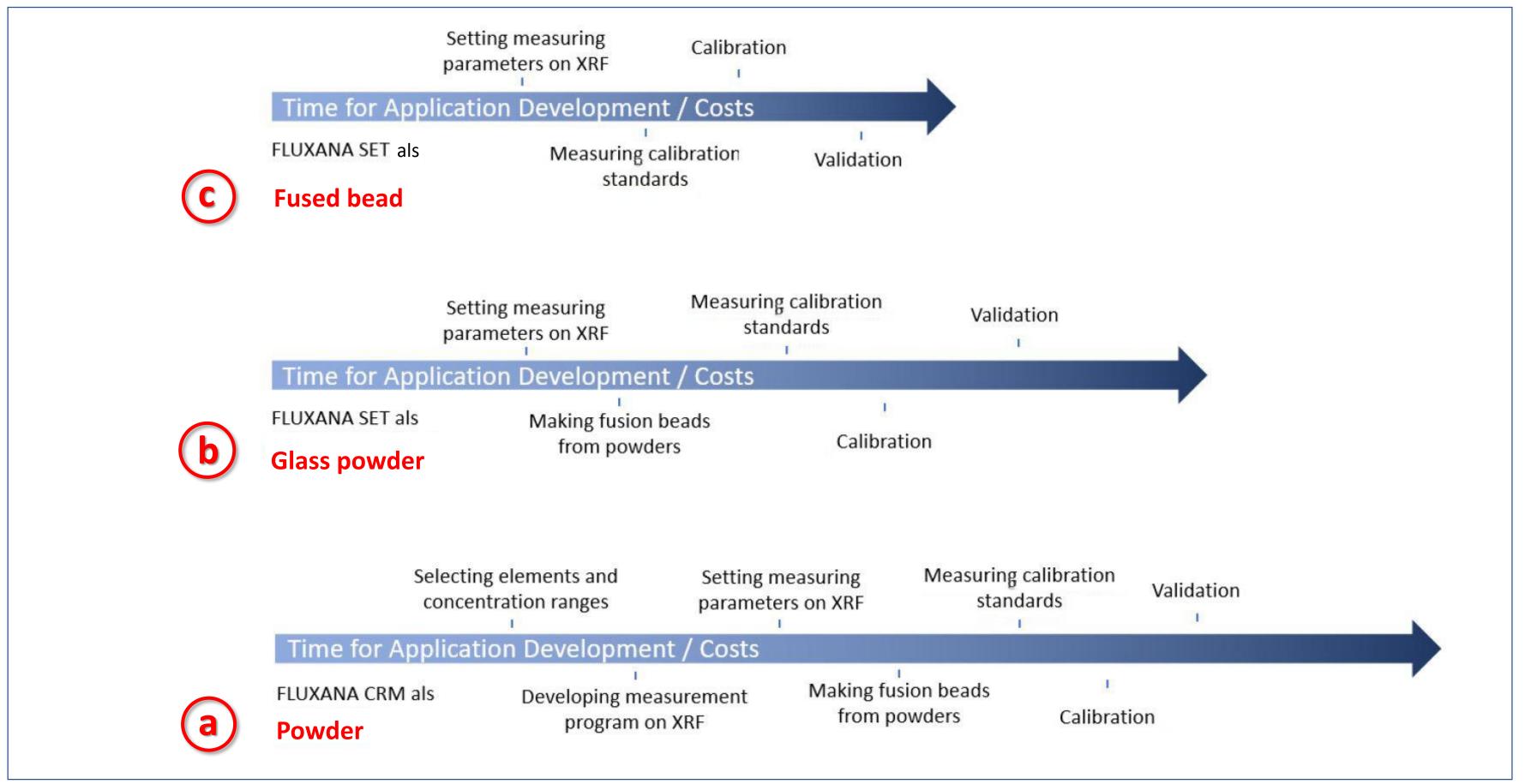
Pure chemicals

Lithium borate

Fusion

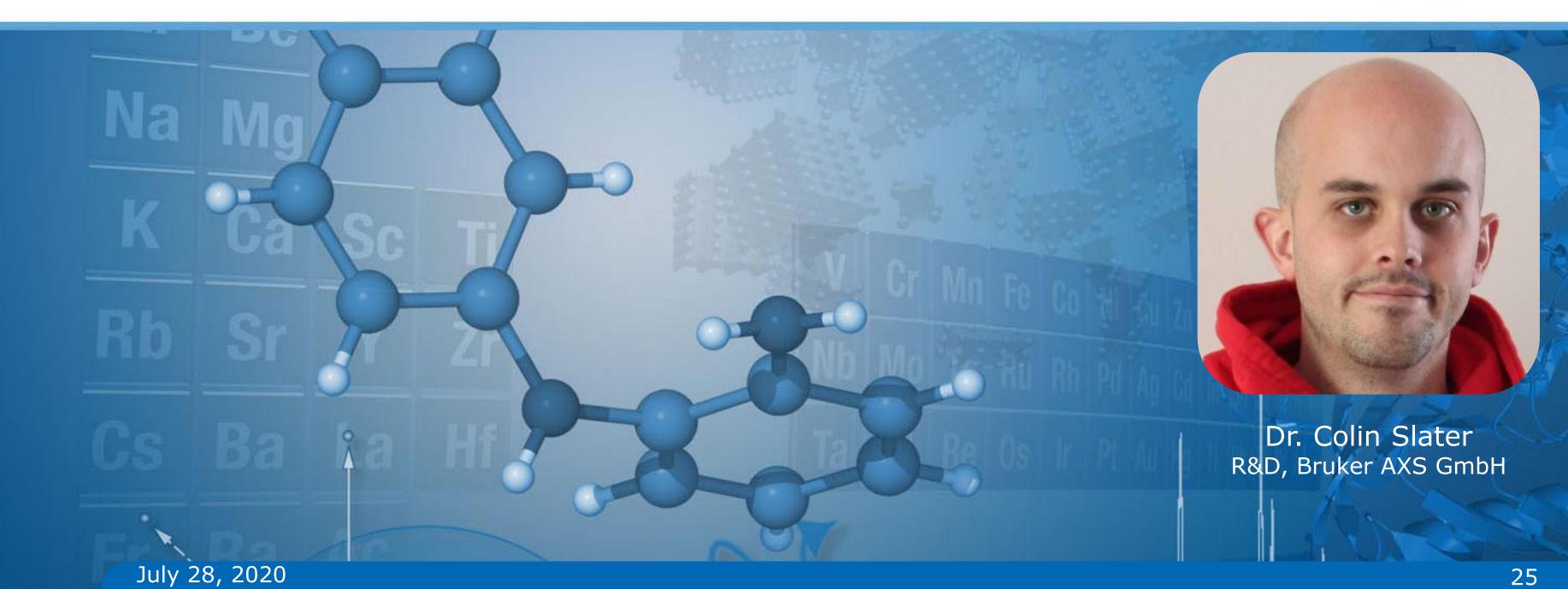
Glass powder

- homogeneous
- approved quality
- customizeable
- independent on fusion process

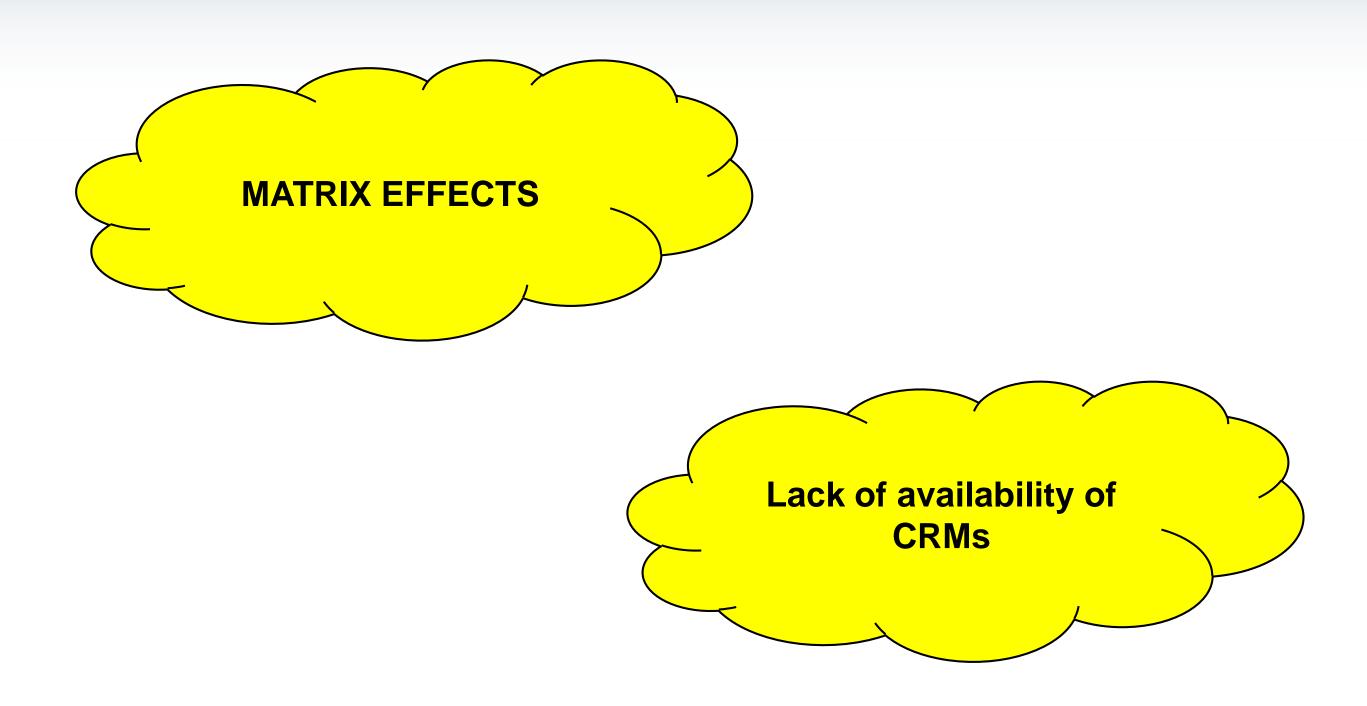

GEO-QUANT Advanced application package

- Glass powder from pure chemicals
- 30g powders including flux
- Just pour into crucible 9 10g
- Software template for calibration
- Includes drift monitor samples
- Includes validation samples
- Ready to go

Comparison of FLUXANA Calibration Samples


Advantages of ready to go applications:

- Save development time
- Save costs
- Expert advice
- Ready-to-go
- Guarantee on reproducibility
- Calibration with highest quality
- Newcomers become experts quickly
- Guaranteed after sales support
- FLUXANA holds ISO 17025 and 17034 accreditation



So what's the problem here?

So what's the problem here?

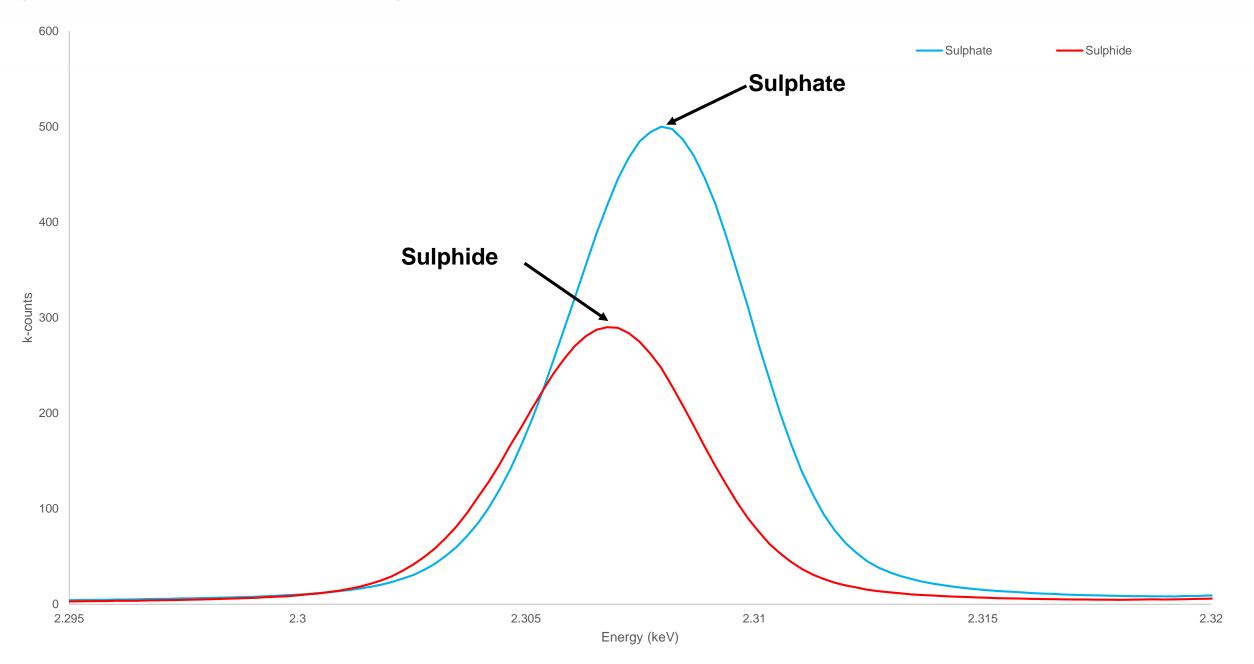
So what's the problem here?

The fundamental parameters are:

- Total mass absorbance coefficients
- Mass photoabsorbance coefficients
- Tube spectrum profile and intensity
- Shell fluorescence yields
- Line transition probabilities
- Line Energy
- Concentration of element
- Geometric considerations (instrument parameters)

For the sample as a whole

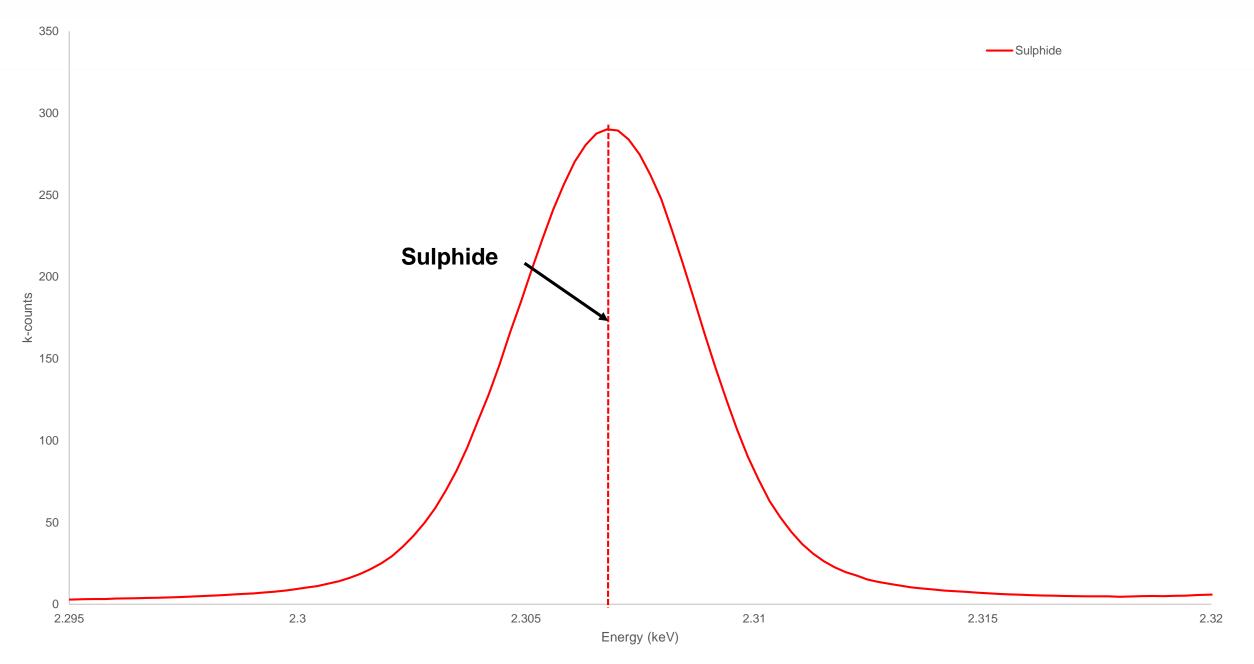
For each element in the sample


Any method created for XRF (whether standards based or standardless) is only as good as the information given to the model.

So what's the problem here? Variable Oxidation State

Shift in peak position.

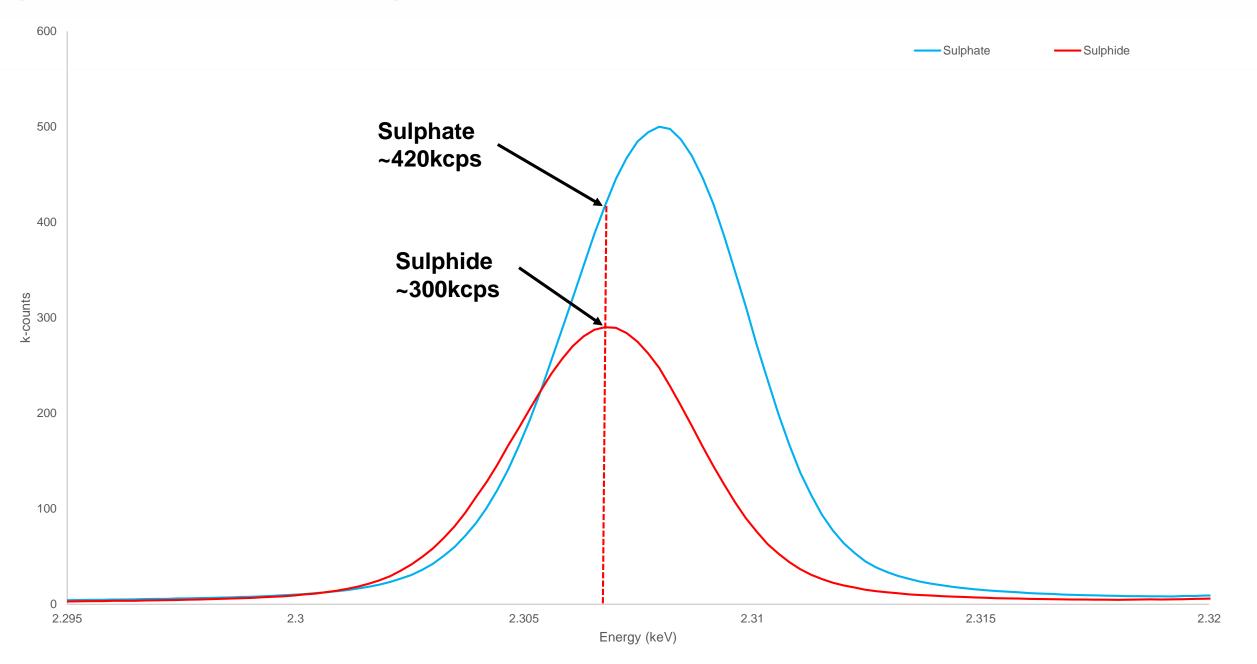
Variable oxygen content causes changes to mass absorbance.



So what's the problem here? Variable Oxidation State

Shift in peak position.

Variable oxygen content causes changes to mass absorbance.



So what's the problem here? Variable Oxidation State

Shift in peak position.

Variable oxygen content causes changes to mass absorbance.

But there aren't any standards for my material... what do I do?

But there aren't any standards for my material... what do I do?

What's your sample throughput like?

But there aren't any standards for my material... what do I do?

What's your sample throughput like?

For some materials, we need an answer within ~15-20mins of sample arriving.

Other materials are not so time critical.

Increasing Cost

Quick Review of Sample Preparation Techniques

Fusion Beads

- Ignite sample @ 1050°C (typically 8-12hrs including cooling)
- Weight sample + flux
- Fusion: typically 15-20 mins per cycle, but can produce multiple (up to 6) beads in a cycle
- Cleaning crucibles: 15-20mins in citric acid bath with ultrasound

Pressed Powders

- Grinding of the sample: 15-60s (typically 20-30s for most samples)
- Cleaning of grinding mill: 15-60s (same cycle as sample run) + drying
- Weighing of ground powder
- Weighing of binding agent
- Mixing of sample with binding agent (60-120s)
- Pressing (typically 20-60s)

Loose Powders

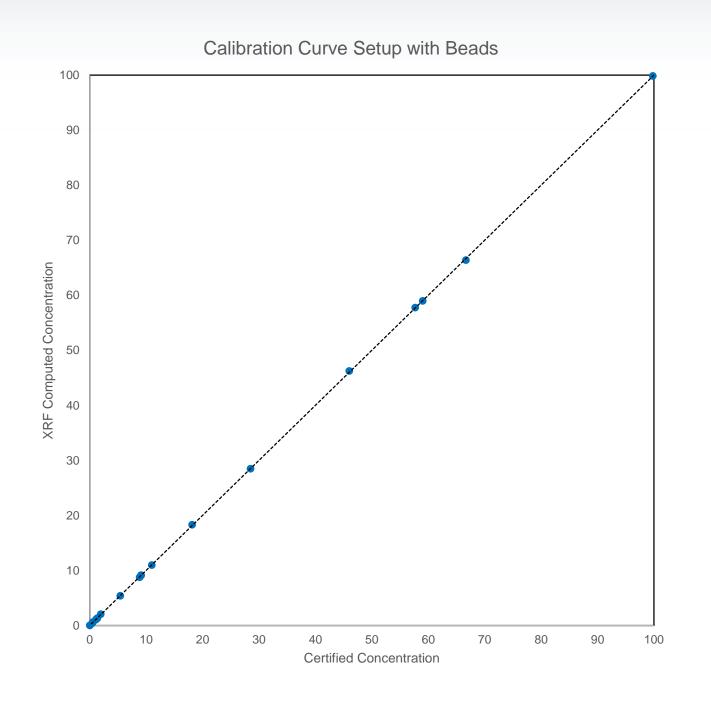
- Preparation of liquid cups can be very quick
- Grinding of powders generally quick... typically 15-60 seconds is sufficient for most common sample types
- Weighing of powders very quick

ncreasing Sample Effect Preparation ("matrix"

35

But there aren't any standards for my material... what do I do?

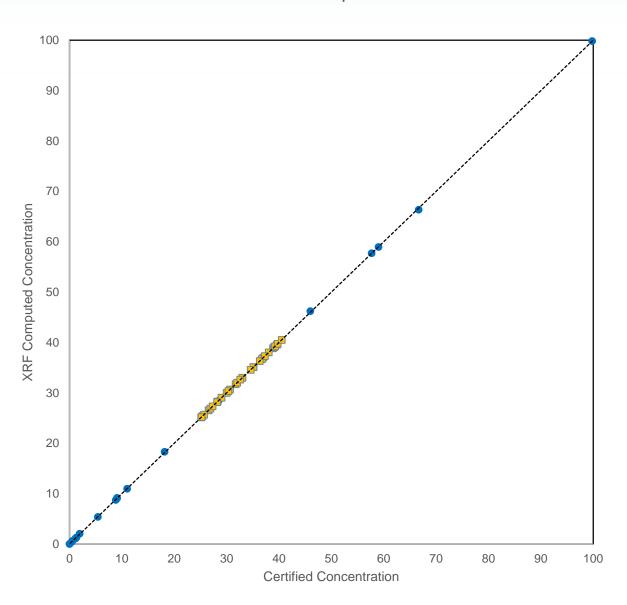
What's your sample throughput like?


For some materials, we need an answer within ~15-20mins of sample arriving.

Other materials are not so time critical.

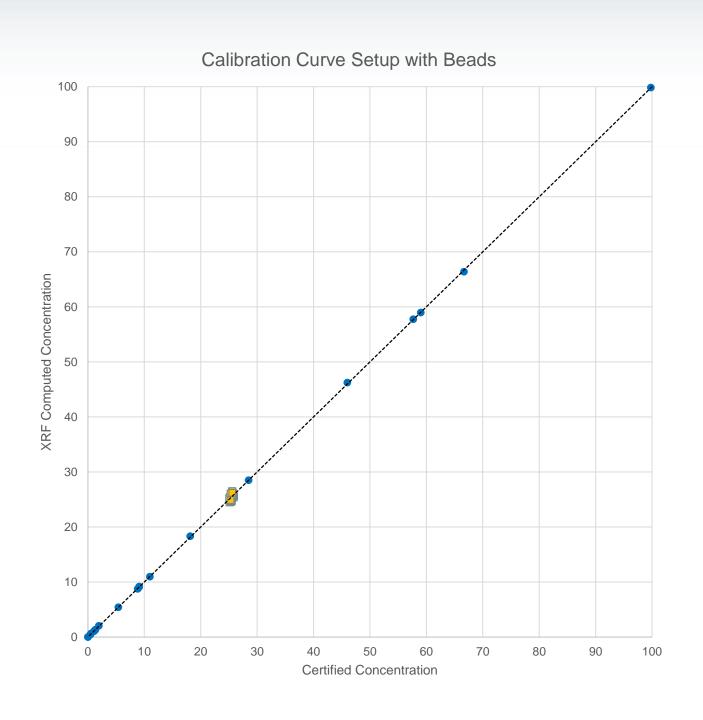
Your materials which are not time critical could just be analysed by fusion bead using a wide-oxide calibration.

For the time critical materials, you could make your own secondary standards.

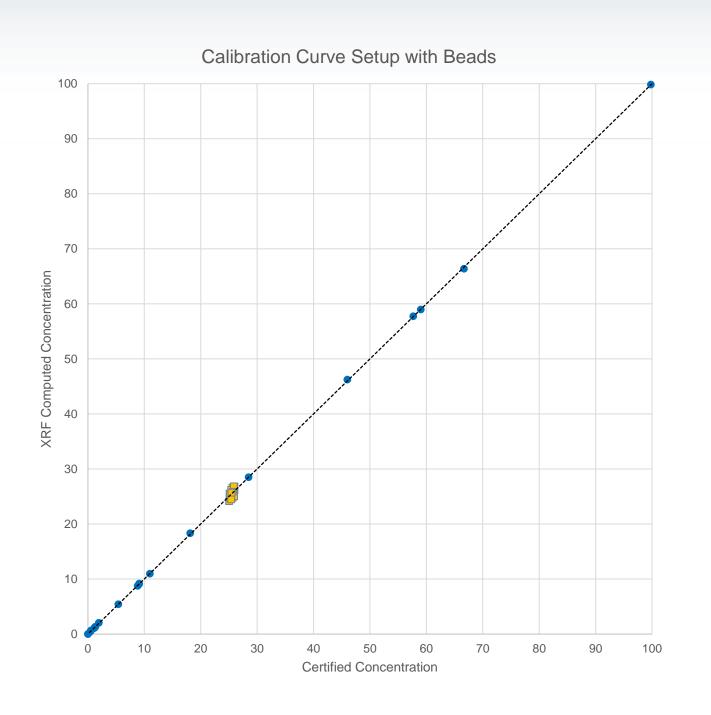


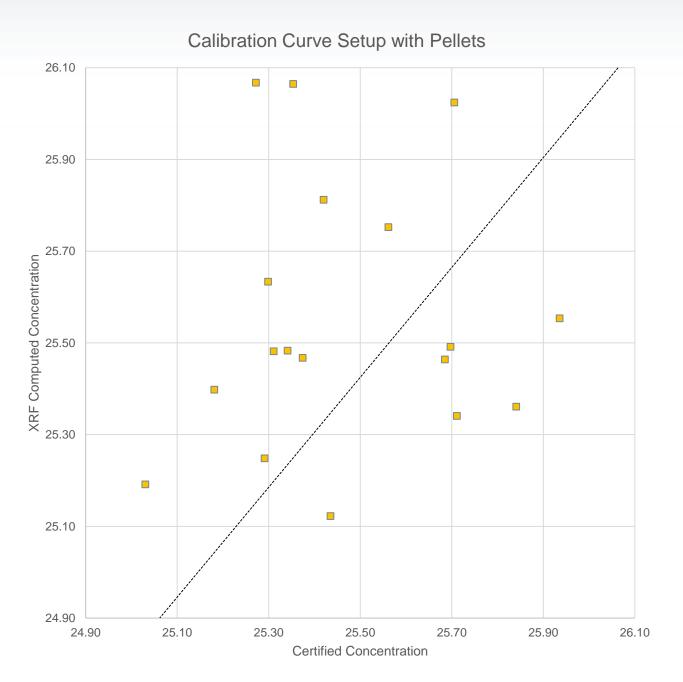
Create a calibration using suitable CRMs, prepared as **fusion beads**

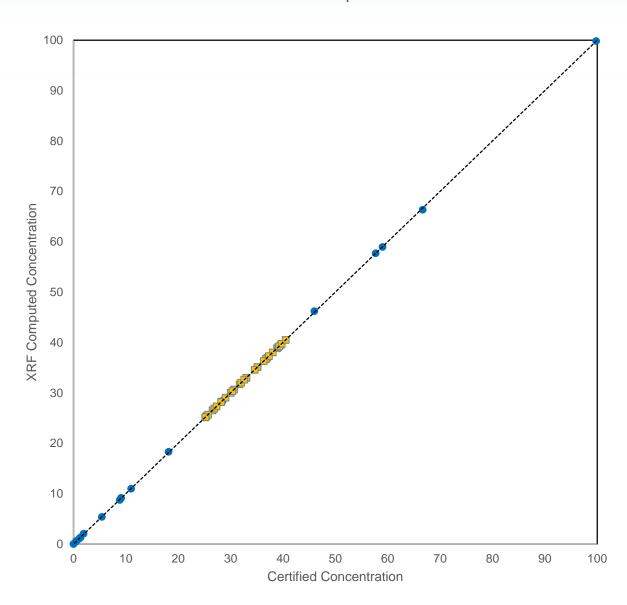
Calibration Curve Setup with Beads


Take a selection of production material, prepare these as fusion beads (same recipe as your calibration) and measure using your fusion bead method.

Top Tip #1




- Production samples don't usually have too wide a spread of concentrations
 - Lots of points on top of each other won't create a good calibration
- Standards Required = 2n + 1, where n is the number of correction factors applied
- Consider whether you need to test duplicates of each sample to check for homogeneity in the sample you've taken.
- Test more production samples that you think you need.



Calibration Curve Setup with Beads

Take a selection of production material, prepare these as fusion beads (same recipe as your calibration) and measure using your fusion bead method.

Prepare the same production material as pellets (or which ever preparation your need) and calibrate using the concentrations

obtained from your fusion bead measurements.

Fusion Beads do still display matrix effects

- Fusion beads are <u>NOT</u> matrix effect free
- The fusion bead technique is an oxidative digestion
 - Your sample is digested and each element converted to a common oxidation state
- These samples are more correctly described as having a Stabilised Matrix

Top Tip #2

Make sure your wide oxide calibration contains standards of similar compositions to those which you wish to analyse. Pick an appropriate fusion recipe.

- This will help to make sure that appropriate matrix corrections can be calculated for the right combinations of elements
- Only go to concentrations ranges you're actually going to use
- Not all materials will dissolve properly in all fluxes / flux mixtures

Examples of Primary Calibration Methods

The following methods are available in the Bruker catalogue:

CEMENT-QUANT

- SiO₂: 19.5 31.2wt%
- For the analysis of 14 oxides in cements and related materials
- GEO-QUANT Basic

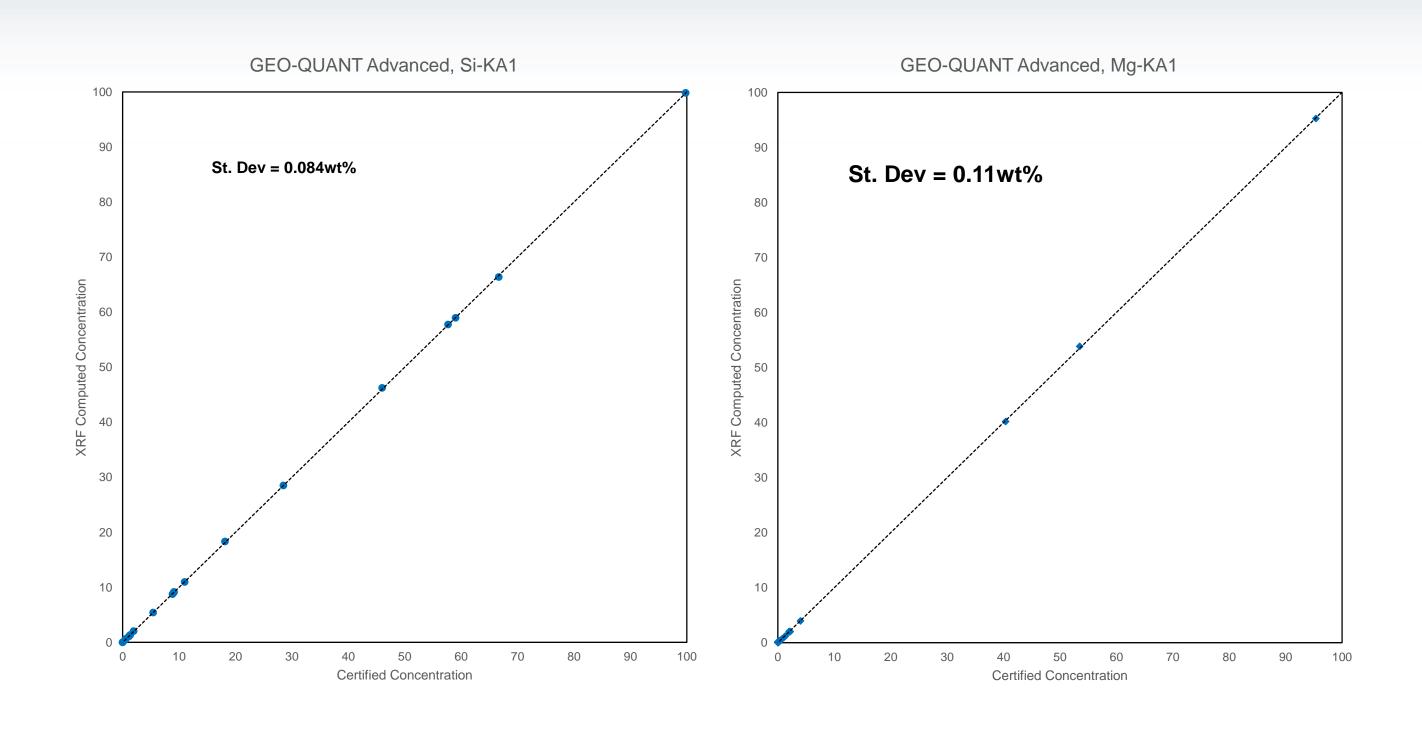
- SiO₂: 0.51 99.85wt%
- For the analysis of 14 oxides in raw materials and common geological phases
- GEO-QUANT Advanced
 - For the analysis of 21 oxides in raw materials and an extended range of geological and industrial phases
- SLAG-QUANT
 - For the analysis of slags from the iron and steel making process

Two real life examples

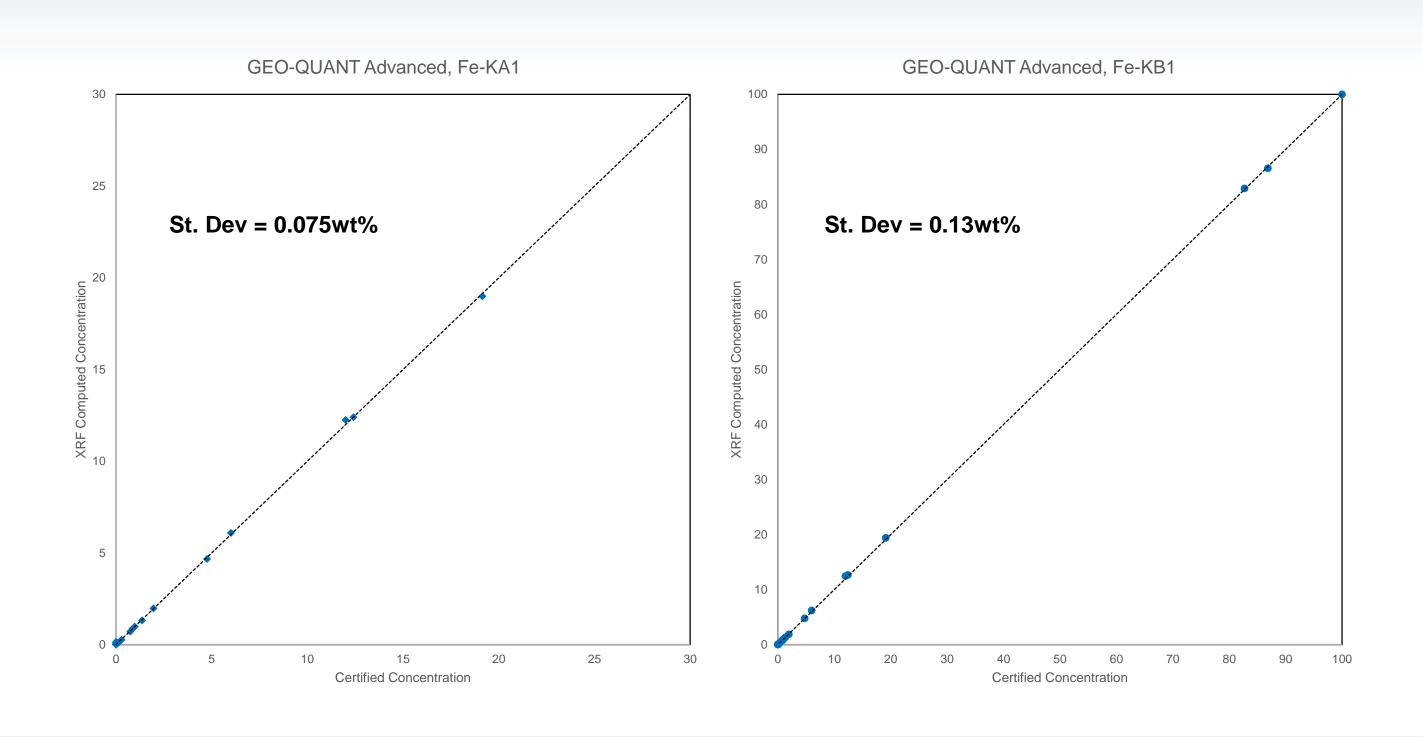
GEO-QUANT Advanced

- Wide Oxide Calibration for 21 elements in Oxide Form
- Fusion Bead Preparation using 'Ready-to-Fuse' Preparation
- Requires ignited sample

- Wide Oxide Calibration specifically developed for analysis of slag samples
- Sulphur analysis from CGA
- Special fusion method that allows dry sample to be used


- 32 CRMs for Calibration
- 5 CRMs for QC
- 3 Glasses for DC
- Calibration parameters on a USB Stick

Sample Preparation:


- 0.50g Ignited Sample
- 8.50g 66T:34M Flux

Analyte	Min. (wt%)	Max. (wt%)	St. Dev (1)	St. Dev (2)	LLD (%) (1)
Na ₂ O	0.01	20.06	0.045		0.03
MgO	0.01	95.36	0.1		0.01
Al_2O_3	0.05	100.00	0.084		0.008
SiO ₂	0.40	99.80	0.16		0.009
P_2O_5	0.01	40.57	0.04		0.004
SO_3	0.01	56.40	0.18		0.004
K ₂ O	0.01	8.96	0.03		0.003
CaO	0.02	97.88	0.17	0.32	0.004
TiO ₂	0.01	40.92	0.15	0.22	0.005
V2O5	0.10	10.00	0.029	0.15	0.005
Cr_2O_3	0.01	18.40	0.027	0.22	0.004
Mn_2O_3	0.01	73.26	0.023	0.13	0.004
Fe ₂ O ₃	0.01	100.00	0.078	0.19	0.004
NiO	0.01	6.00	0.009	0.014	0.003
CuO	0.01	20.00	0.062	0.03	0.002
ZnO	0.01	10.00	0.023	0.061	0.002
SrO	0.01	20.00	0.078		0.002
ZrO_2	0.01	65.00	0.030	0.14	0.01
BaO	0.01	40.00	0.01	0.048	0.01
HfO2	0.03	5.00	0.032		0.006
PbO	0.35	8.00	0.081	0.048	0.004

Top Tip #4

Don't forget instrumental limitations, such as linear range and resolution

- Just because you can make standards from 0 100%, doesn't mean you can measure these directly with the same line
- Line switching to alternative lines $(KA \rightarrow KB, or K \rightarrow L)$
 - Take advantage of lower intensities for higher concentrations
 - Avoid spectral overlaps by measuring a line that isn't overlapped

Slag (BCS-CRM 38	31
------------------	----

GQA Cert Na2O (%) 0.100 MgO (%) 0.941 1.030 Al2O3 (%) 0.829 0.670 SiO2 (%) 8.741 8.780 P2O5 (%) 15.750 15.700 SO3 (%) 0.393 0.474 K2O (%) 0.026 CaO (%) 49.190 49.000 TiO2 (%) 0.346 0.350 V2O5 (%) 0.950 0.940 Cr2O3 (%) 0.355 0.330 Mn2O3 (%) 3.568 3.516 Fe2O3 (%) 19.140 19.015 NiO (%) 0.001 CuO (%) 0.000 ZnO (%) 0.000 SrO (%) 0.011 ZrO2 (%) 0.000 BaO (%) 0.024 HfO2 (%) 0.470 PbO (%) 0.000

Sum (%) 100.835 99.805

Cement (FLX-CRM 101) Magnesite (BCS-CRM 319)

	GQA	Cert
Na2O (%)	0.693	0.680
MgO (%)	1.678	1.700
Al2O3 (%)	8.750	8.810
SiO2 (%)	30.190	30.310
P2O5 (%)	0.265	0.191
SO3 (%)	3.029	3.160
K2O (%)	2.112	2.100
CaO (%)	48.380	48.240
TiO2 (%)	0.474	0.469
V2O5 (%)	0.000	
Cr2O3 (%)	0.004	0.010
Mn2O3 (%)	0.120	0.118
Fe2O3 (%)	3.481	3.520
NiO (%)	0.007	
CuO (%)	0.007	
ZnO (%)	0.045	0.044
SrO (%)	0.252	0.248
ZrO2 (%)	0.019	
BaO (%)	0.075	
HfO2 (%)	0.421	
PbO (%)	0.003	
Sum (%)	100.005	99.600

	GQA	Cert
Na2O (%)	0.052	
MgO (%)	94.730	95.380
Al2O3 (%)	0.071	0.109
SiO2 (%)	1.040	1.093
P2O5 (%)	0.000	
SO3 (%)	0.000	
K2O (%)	0.009	
CaO (%)	3.133	3.000
TiO2 (%)	0.025	0.007
V2O5 (%)	0.000	
Cr2O3 (%)	0.001	0.004
Mn2O3 (%)	0.130	0.108
Fe2O3 (%)	0.323	0.291
NiO (%)	0.011	
CuO (%)	0.000	
ZnO (%)	0.000	
SrO (%)	0.000	
ZrO2 (%)	0.000	
BaO (%)	0.000	
HfO2 (%)	0.470	
PbO (%)	0.000	
Sum (%)	99.995	99.992

Zircon (SARM 13)

	GQA	Cert
Na2O (%)	0.000	
MgO (%)	0.030	0.044
Al2O3 (%)	0.630	0.611
SiO2 (%)	32.100	32.630
P2O5 (%)	0.339	0.230
SO3 (%)	0.000	
K2O (%)	0.029	
CaO (%)	0.131	0.140
TiO2 (%)	0.420	0.296
V2O5 (%)	0.000	
Cr2O3 (%)	0.630	
Mn2O3 (%)	0.436	
Fe2O3 (%)	0.235	0.187
NiO (%)	0.100	
CuO (%)	0.024	
ZnO (%)	0.002	
SrO (%)	0.000	
ZrO2 (%)	64.000	64.140
BaO (%)	0.005	
HfO2 (%)	1.309	1.290
PbO (%)	0.008	
Sum (%)	100.429	99.568

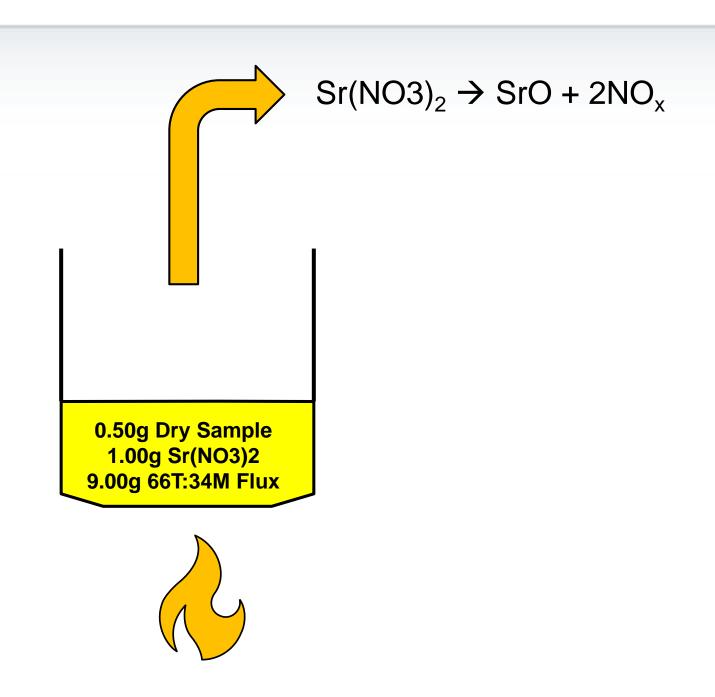
Limestone (BCS-CRM 513)

	GQA	Cert
Na2O (%)	0.038	
MgO (%)	0.405	0.323
Al2O3 (%)	0.168	0.192
SiO2 (%)	0.448	0.404
P2O5 (%)	0.026	0.008
SO3 (%)	0.031	0.043
K2O (%)	0.013	0.027
CaO (%)	98.740	98.580
TiO2 (%)	0.019	0.008
V2O5 (%)	0.000	
Cr2O3 (%)	0.000	0.002
Mn2O3 (%)	0.008	0.019
Fe2O3 (%)	0.088	0.049
NiO (%)	0.004	
CuO (%)	0.000	
ZnO (%)	0.001	0.003
SrO (%)	0.017	0.031
ZrO2 (%)	0.000	
BaO (%)	0.000	
HfO2 (%)	0.027	
PbO (%)	0.024	
Sum (%)	100.055	99.689

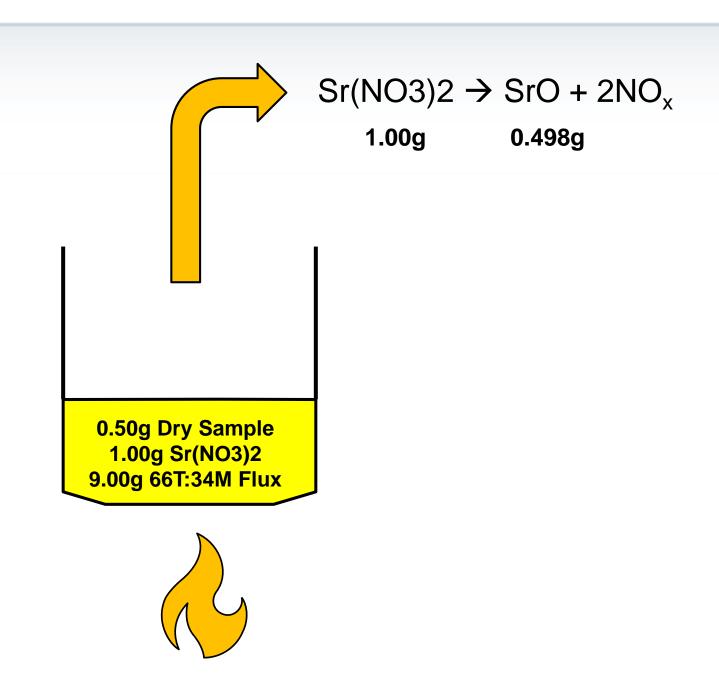
- Analysis of 16 oxides in slags from the iron and steel making process
- Special sample preparation to avoid the need to work with ignited powders

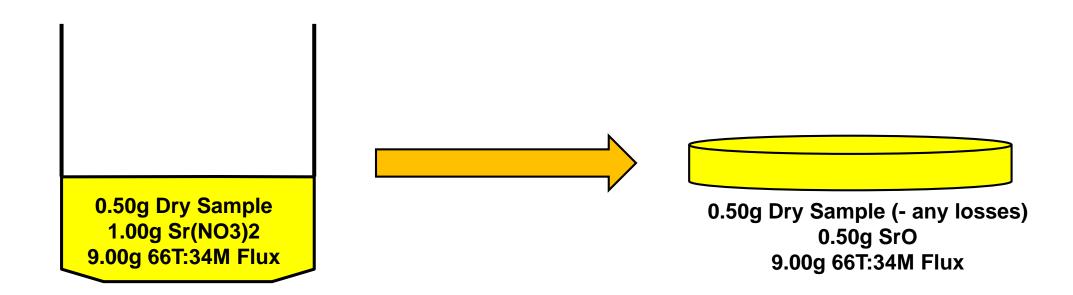
- GEO-QUANT Advanced
 - 0.50g **Ignited** Sample
 - 8.50g 66T:34M Flux
- **SLAG-QUANT**
 - 0.50g **Dry** Sample
 - 1.00g $Sr(NO_3)_2$ Oxidising Agent

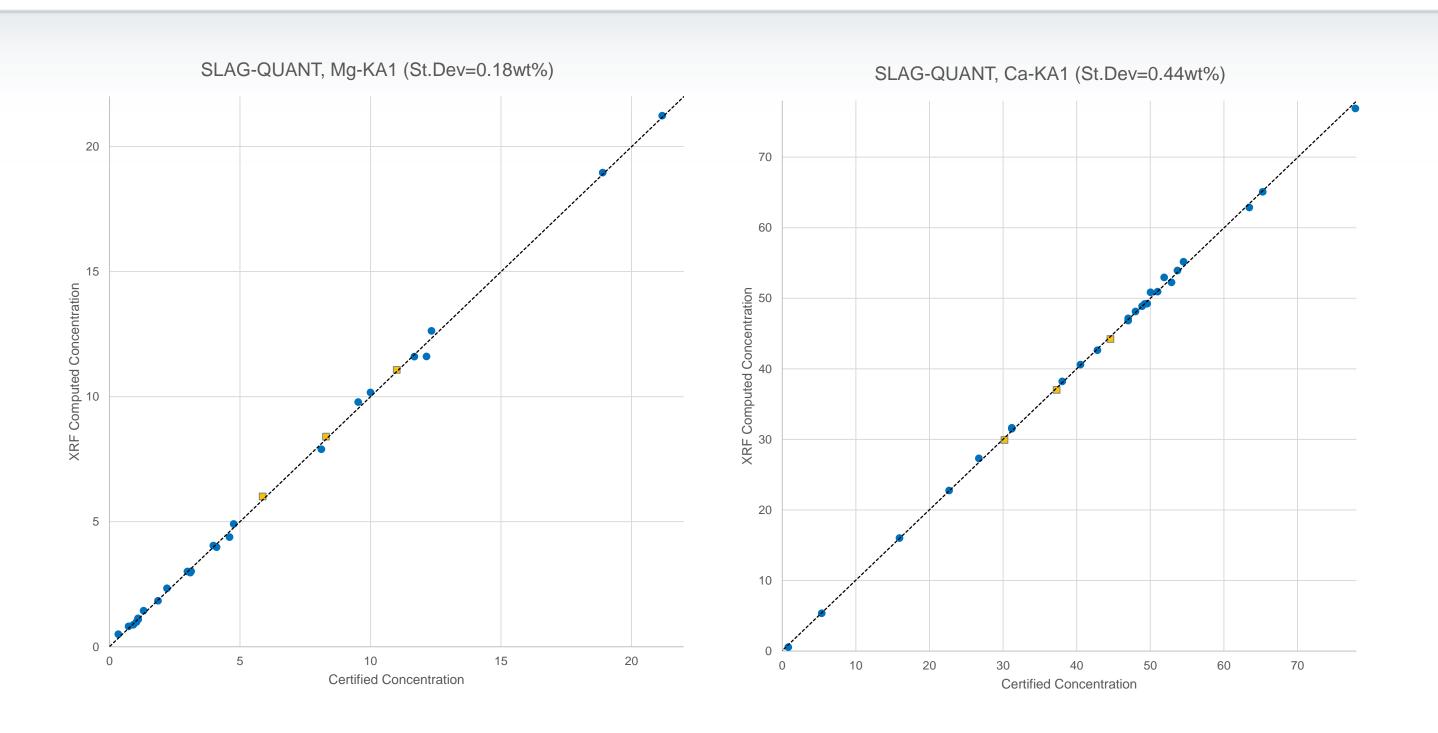
• 9.00g 66T:34M Flux



0.50g Dry Sample 1.00g Sr(NO3)2 9.00g 66T:34M Flux

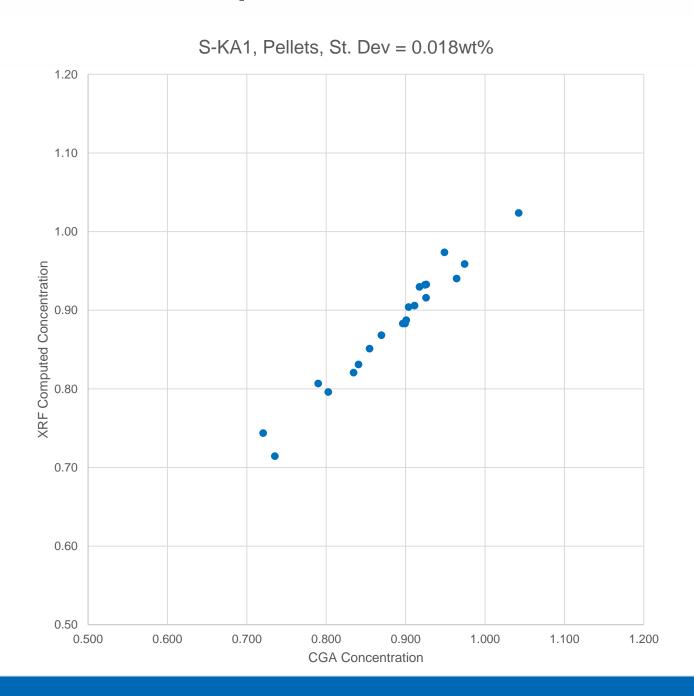






- A series of blast furnace slags from a steel producer were fused and analysed by SLAG-QUANT
- The samples were also analysed for their sulphur content using a G4 ICARUS combustion gas analyser
- These results were used to create a pressed pellet based calibration for rapid production control of blast furnace slag

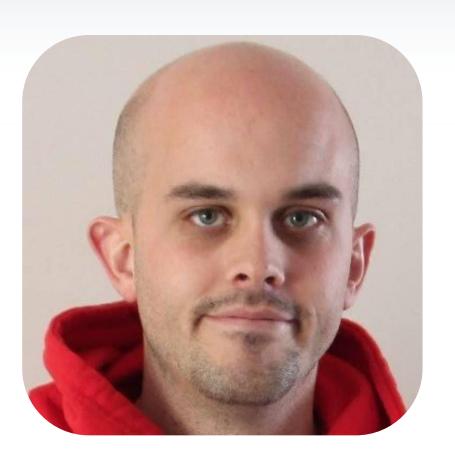
Sample Name	Na2O(%)	MgO(%)	Al2O3(%)	SiO2(%)	P2O5(%)	SO3(%)	K2O(%)	CaO(%)	TiO2(%)	V2O5(%)	Cr2O3(%)	Mn2O3(%)	Fe2O3(%)	NiO(%)	CuO(%)	ZnO(%)	PbO(%)
SLAG 01	0.277	6.940	11.441	34.129	0.011	0.896	0.470	39.820	0.614	0.000	0.014	0.492	0.155	0.03109	0.00555	0.01350	0.00209
SLAG 02	0.315	6.525	11.472	33.425	0.011	0.841	0.454	38.885	0.646	0.000	0.015	0.625	0.186	0.03102	0.00579	0.01309	0.00000
SLAG 03	0.315	6.789	11.636	35.830	0.015	0.855	0.556	39.107	0.641	0.000	0.016	0.509	0.580	0.03102	0.00565	0.01343	0.00210
SLAG 04	0.230	7.053	12.017	34.972	0.014	0.926	0.408	39.348	0.598	0.000	0.018	0.462	0.212	0.03130	0.00564	0.01188	0.00000
SLAG 05	0.299	6.892	12.748	34.632	0.006	0.964	0.422	39.764	0.551	0.000	0.017	0.369	0.101	0.03104	0.00567	0.01240	0.00000
SLAG 06	0.237	6.896	11.380	34.143	0.010	0.949	0.447	39.064	0.601	0.000	0.014	0.444	0.138	0.03136	0.00571	0.01300	0.00225
SLAG 07	0.273	6.867	12.363	34.262	0.009	0.926	0.387	39.306	0.584	0.000	0.021	0.433	0.106	0.03112	0.00565	0.01334	0.00208
SLAG 08	0.248	6.830	12.179	33.681	0.005	1.042	0.336	39.217	0.543	0.000	0.019	0.357	0.160	0.03152	0.00561	0.01379	0.00254
SLAG 09	0.237	7.322	11.458	34.177	0.006	0.924	0.383	40.015	0.595	0.000	0.017	0.461	0.118	0.03105	0.00556	0.01335	0.00239
SLAG 10	0.256	7.065	11.324	33.493	0.017	0.899	0.458	39.476	0.619	0.002	0.016	0.578	0.186	0.03131	0.00553	0.01305	0.00497
SLAG 11	0.425	7.062	12.671	35.745	0.040	0.735	0.652	39.763	0.700	0.011	0.018	0.884	0.417	0.03120	0.00579	0.01240	0.00000
SLAG 12	0.298	7.421	11.887	36.052	0.017	0.834	0.501	41.364	0.651	0.000	0.014	0.590	0.264	0.03082	0.00560	0.01193	0.00000
SLAG 13	0.435	6.539	11.689	35.775	0.023	0.721	0.806	39.616	0.706	0.007	0.014	0.710	0.384	0.03091	0.00551	0.01189	0.00000
SLAG 14	0.277	6.873	13.562	34.169	0.014	0.974	0.360	39.222	0.591	0.000	0.019	0.541	0.147	0.03097	0.00572	0.01288	0.00000
SLAG 15	0.350	6.989	12.654	33.884	0.016	0.901	0.405	38.848	0.567	0.000	0.018	0.498	0.137	0.03148	0.00560	0.01260	0.00000
SLAG 16	0.279	6.870	10.945	33.005	0.015	0.869	0.457	40.090	0.599	0.000	0.016	0.519	0.160	0.03117	0.00555	0.01224	0.00000
SLAG 17	0.271	6.941	11.421	33.984	0.012	0.904	0.428	40.231	0.586	0.000	0.014	0.434	0.168	0.03126	0.00562	0.01241	0.00000
SLAG 18	0.289	7.153	11.312	35.050	0.018	0.790	0.488	41.177	0.632	0.000	0.016	0.590	0.128	0.03099	0.00557	0.01261	0.00000
SLAG 19	0.257	6.878	11.101	32.864	0.015	0.918	0.404	40.131	0.564	0.000	0.014	0.438	0.128	0.03145	0.00560	0.01258	0.00000
SLAG 20	0.348	6.856	12.527	36.065	0.013	0.803	0.501	39.960	0.708	0.000	0.019	0.711	0.192	0.03106	0.00553	0.01151	0.00000
MIN	0.230	6.525	10.945	32.864	0.005	0.721	0.336	38.848	0.543	0.000	0.014	0.357	0.101	0.031	0.006	0.012	0.000
MAX	0.435	7.421	13.562	36.065	0.040	1.042	0.806	41.364	0.708	0.011	0.021	0.884	0.580	0.032	0.006	0.014	0.005


Sample													
Name	Na2O(%)	MgO(%)	Al2O3(%)	SiO2(%)	P2O5(%)	SO3(%)	K2O(%)	CaO(%)	TiO2(%)	V2O5(%)	Cr2O3(%)	Mn2O3(%)	Fe2O3(%) NiO(%) CuO(%) ZnO(%) PbO(%)
SLAG 01	0.277	6.940	11.441	34.129	0.011	0.896	0.470	39.820	0.614	0.000	0.014	0.492	0.155 0.03109 0.00555 0.01350 0.00209
SLAG 02	0.315	6.525	11.472	33.425	0.011	0.841	0.454	38.885	0.646	0.000	0.015	0.625	0.186 0.03102 0.00579 0.01309 0.00000
SLAG 03	0.315	6.789	11.636	35.830	0.015	0.855	0.556	39.107	0.641	0.000	0.016	0.509	0.580 0.03102 0.00565 0.01343 0.00210
SLAG 04	0.230	7.053	12.017	34.972	0.014	0.926	0.408	39.348	0.598	0.000	0.018	0.462	0.212 0.03130 0.00564 0.01188 0.00000
SLAG 05	0.299	6.892	12.748	34.632	0.006	0.964	0.422	39.764	0.551	0.000	0.017	0.369	0.101 0.03104 0.00567 0.01240 0.00000
SLAG 06	0.237	6.896	11.380	34.143	0.010	0.949	0.447	39.064	0.601	0.000	0.014	0.444	0.138 0.03136 0.00571 0.01300 0.00225
SLAG 07	0.273	6.867	12.363	34.262	0.009	0.926	0.387	39.306	0.584	0.000	0.021	0.433	0.106 0.03112 0.00565 0.01334 0.00208
SLAG 08	0.248	6.830	12.179	33.681	0.005	1.042	0.336	39.217	0.543	0.000	0.019	0.357	0.160 0.03152 0.00561 0.01379 0.00254
SLAG 09	0.237	7.322	11.458	34.177	0.006	0.924	0.383	40.015	0.595	0.000	0.017	0.461	0.118 0.03105 0.00556 0.01335 0.00239
SLAG 10	0.256	7.065	11.324	33.493	0.017	0.899	0.458	39.476	0.619	0.002	0.016	0.578	0.186 0.03131 0.00553 0.01305 0.00497
SLAG 11	0.425	7.062	12.671	35.745	0.040	0.735	0.652	39.763	0.700	0.011	0.018	0.884	0.417 0.03120 0.00579 0.01240 0.00000
SLAG 12	0.298	7.421	11.887	36.052	0.017	0.834	0.501	41.364	0.651	0.000	0.014	0.590	0.264 0.03082 0.00560 0.01193 0.00000
SLAG 13	0.435	6.539	11.689	35.775	0.023	0.721	0.806	39.616	0.706	0.007	0.014	0.710	0.384 0.03091 0.00551 0.01189 0.00000
SLAG 14	0.277	6.873	13.562	34.169	0.014	0.974	0.360	39.222	0.591	0.000	0.019	0.541	0.147 0.03097 0.00572 0.01288 0.00000
SLAG 15	0.350	6.989	12.654	33.884	0.016	0.901	0.405	38.848	0.567	0.000	0.018	0.498	0.137 0.03148 0.00560 0.01260 0.00000
SLAG 16	0.279	6.870	10.945	33.005	0.015	0.869	0.457	40.090	0.599	0.000	0.016	0.519	0.160 0.03117 0.00555 0.01224 0.00000
SLAG 17	0.271	6.941	11.421	33.984	0.012	0.904	0.428	40.231	0.586	0.000	0.014	0.434	0.168 0.03126 0.00562 0.01241 0.00000
SLAG 18	0.289	7.153	11.312	35.050	0.018	0.790	0.488	41.177	0.632	0.000	0.016	0.590	0.128 0.03099 0.00557 0.01261 0.00000
SLAG 19	0.257	6.878	11.101	32.864	0.015	0.918	0.404	40.131	0.564	0.000	0.014	0.438	0.128 0.03145 0.00560 0.01258 0.00000
SLAG 20	0.348	6.856	12.527	36.065	0.013	0.803	0.501	39.960	0.708	0.000	0.019	0.711	0.192 0.03106 0.00553 0.01151 0.00000
MIN	N 0.230	6.525	10.945	32.864	0.005	0.721	0.336	38.848	0.543	0.000	0.014	0.357	0.101 0.031 0.006 0.012 0.000
MAX	(0.435	7.421	13.562	36.065	0.040	1.042	0.806	41.364	0.708	0.011	0.021	0.884	0.580 0.032 0.006 0.014 0.005

Sulphur analysis in fusion beads is challenging → volatile So what do we do to get good sulphur values?

- Sulphur analysis by Combustion Gas Analysis
- G4 ICARUS CS Analyser

Q & A


Please type any questions you may have in the Q&A tool and click Submit.

Dr. Rainer Schramm CEO, Fluxana GmbH & Co KG rschramm@fluxana.com

Dr. Colin Slater R&D, Bruker AXS GmbH colin.slater@bruker.com

Thank you for attending!

- We will answer remaining questions individually via email
- You may Contact Us at any time to get more information or discuss your application and instrumentation needs
- Brochures, application notes and lab reports are available for download in our Resource List
- An on-demand version of this webcast will be available tomorrow at the same URL
- Sign Up for our other upcoming and on-demand webinars at <u>BAXS Virtual</u> <u>Events 2020</u>
- Fill out our exit survey to let us know how we did